
System I

Bo Feng, Lei Wu, Rui Chang

Zhejiang University

Sequential Logic Design

§ Many images and resources used in this lecture are
collected from the Internet, and they are used only for
the educational purpose. The copyright belong to the
original owners, respectively.

§ Part of slides credit to
• David Money Harris and Sarah L. Harris. Digital Design and

Computer Architecture, 2nd Edition.
• Morris R. Mano , Charles R. Kime and Tom Martin. Logic &

Computer Design Fundamentals, Fifth Edition.
• Prof. Yabo Dong @ ZJU
• CSE 140: Components and Design Techniques for Digital

Systems (Prof. C.K. Cheng @ UCSD)
• CEG 360/560; EE 451/651: Digital System Design (Prof. Travis

Doom @ Wright State University)

Disclaimer

2

Overview

§ Introduction to sequential circuits
§ Basic sequential logic elements
§ Sequential logic design
§ Classic sequential logic elements

3

Sequential logic design

§ Some definitions
§ The design procedure
§ State machine design

4

Equivalent State

§ Two states are equivalent if their response for each
possible input sequence is an identical output
sequence.

§ Alternatively, two states are equivalent if their
outputs produced for each input symbol is identical
and their next states for each input symbol are the
same or equivalent.

5

Equivalent State Example

§ For states S3 and S2
• the output for input

0 is 1 and input 1 is 0, and
• the next state for input

0 is S0 and for input
1 is S2

§ By the alternative definition, states S3 and S2 are
equivalent.

6

S2 S3

1/00/1

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

Equivalent State Example

§ Replacing S3 and S2
by a single state gives
state diagram:

§ Examining the new diagram,
states S1 and S2 are equivalent since
• their outputs for input

0 is 1 and input 1 is 0
• their next state for input

0 is S0 and for input
1 is S2

§ Replacing S1 and S2 by a
single state gives state
diagram:

7

S2

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

0/0

S0 S1

1/0

0/1

1/0

Equivalent State Example

§ Replacing S3 and S2
by a single state gives
state diagram:

§ Examining the new diagram,
states S1 and S2 are equivalent since
• their outputs for input

0 is 1 and input 1 is 0
• their next state for input

0 is S0 and for input
1 is S2

§ Replacing S1 and S2 by a
single state gives state
diagram:

8

S2

1/0

0/0

S0 S1

1/0

0/1

1/0

0/1

0/0

S0 S1

1/0

0/1

1/0

Moore and Mealy Models

§ There are two formal models of FSMs:

9

§ Moore model
• Named after E.F.

Moore
• Outputs are a function

ONLY of states
• Usually specified on

the states.

§ Mealy model
• Named after G. Mealy
• Outputs are a function

of inputs AND states
• Usually specified on

the state transition arcs.

Moore and Mealy Example

§ Moore model state table/diagram
maps states to outputs

§ Mealy model state table/diagram
maps inputs and state to outputs

10

0 1

x=1/y=1

x=1/y=0

x=0/y=0

x=0/y=0

B/0 C/1

x=1x=1

x=0

x=0

x=1

x=0

A/0Present
State

Next State
x=0 x=1

Output

A A B 0
B A C 0
C A C 1

Present
State

Next State
x=0 x=1

Output
x=0 x=1

0 0 1 0 0
1 0 1 0 1

The Design Procedure

§ Specification
§ Formulation
• Obtain a state diagram or state table

§ State assignment
• Assign binary codes to the states

§ Flip-flop input equation determination
• Select flip-flop types and derive flip-flop equations from next state entries

in the table
§ Output equation determination
• Derive output equations from output entries in the table

§ Optimization
• Optimize the equations

§ Technology mapping
• Find circuit from equations and map to flip-flops and gate technology

§ Verification
• Verify correctness of final design

11

Formulation: Finding a State Diagram

§ A state is an abstraction of the history of the past applied
inputs to the circuit (including power-up reset or system
reset).
• The interpretation of “past inputs” is tied to the synchronous operation

of the circuit. E.g., an input value (other than an asynchronous reset) is
measured only during the setup-hold time interval for an edge-
triggered flip-flop.

§ Examples:
• State A represents the fact that a 1 input has occurred among the past

inputs.
• State B represents the fact that a 0 followed by a 1 have occurred as the

most recent past two inputs.

12

Formulation: Finding a State Diagram
(cont’d)
§ In specifying a circuit, we use states to remember meaningful

properties of past input sequences that are essential to
predicting future output values.

§ A sequence recognizer is a sequential circuit that produces a
distinct output value whenever a prescribed pattern of input
symbols occur in sequence, i.e., recognizes an input sequence
occurrence.

§ We will develop a procedure specific to sequence recognizers
to convert a problem statement into a state diagram.

§ Next, the state diagram, will be converted to a state table from
which the circuit will be designed.

13

Sequence Recognizer Procedure

§ To develop a sequence recognizer state diagram:
• Begin in an initial state in which NONE of the initial portion of the

sequence has occurred (typically “reset” state).
• Add a state that recognizes that the first symbol has occurred.
• Add states that recognize each successive symbol occurring.
• The final state represents the input sequence (possibly less than the

final input value) occurrence.
• Add state transition arcs which specify what happens when a symbol

NOT in the proper sequence has occurred.
• Add other arcs on non-sequence inputs which transition to states that

represent the input subsequence that has occurred.

§ The last step is required because the circuit must recognize the
input sequence regardless of where it occurs within the
overall sequence applied since “reset”.

14

Sequence Recognizer Procedure (cont’d)

§ Example: Recognize the sequence 1101
• Note that the sequence 1111101 contains 1101 and "11" is a proper

sub-sequence of 1101.

§ Thus, the sequential machine must remember that the first two
one's have occurred as it receives another symbol.

§ Also, the sequence 1101101 contains 1101 as both an initial
subsequence and a final subsequence with some overlap, i. e.,
1101101 or 1101101.

§ And, the 1 in the middle, 1101101, is in both subsequences.
§ The sequence 1101 must be recognized each time it occurs in

the input sequence.

15

Example: Recognize 1101

§ Define states for the sequence to be recognized:
• assuming it starts with first symbol,
• continues through each symbol in the sequence to be recognized, and
• uses output 1 to mean the full sequence has occurred,
• with output 0 otherwise.

§ Starting in the initial state (Arbitrarily named "A"):
• Add a state that recognizes the first "1."

• State "A" is the initial state, and state "B" is the state which represents
the fact that the "first" one in the input subsequence has occurred. The
output symbol "0" means that the full recognized sequence has not yet
occurred.

16

A B1/0

Example: Recognize 1101 (cont’d)

§ After one more 1, we have:
• C is the state obtained

when the input sequence
has two "1"s.

17

A B1/0 C
1/0

A B1/0
C

1/0 0/0
D 1/1

§ Finally, after 110 and a 1, we have:

§ Transition arcs are used to denote the output function (Mealy model)
§ Output 1 on the arc from D means the sequence has been recognized
§ To what state should the arc from state D go? Remember: 1101101 ?
§ Note that D is the last state but the output 1 occurs for the input applied in

D. This is the case when a Mealy model is assumed.

Example: Recognize 1101 (cont’d)

§ Clearly the final 1 in the recognized sequence 1101 is a sub-
sequence of 1101.

§ It must be the first 1 in the sequence, since it cannot be
preceded by a 1. Thus it should represent the same state
reached from the initial state after a first 1 is observed. We
obtain:

18
1/1

DA B1/0 C
1/0 0/0

A B1/0 C1/0 0/0 D 1/1

Example: Recognize 1101 (cont’d)

§ The state have the following abstract meanings:
• A: No proper sub-sequence of the sequence has occurred.
• B: The sub-sequence 1 has occurred.
• C: The sub-sequence 11 has occurred.
• D: The sub-sequence 110 has occurred.
• The 1/1 on the arc from D to B means that the last 1 has occurred and

thus, the sequence is recognized.

19

1/1

A B
1/0

C
1/0

D
0/0

Example: Recognize 1101 (cont’d)

§ The other arcs are added to each state for inputs not yet listed.
Which arcs are missing?

20

1/1

A B
1/0

C
1/0

D
0/0

§ Answer:
§ "0" arc from A

 "0" arc from B
 "1" arc from C
 "0" arc from D.

Example: Recognize 1101 (cont’d)

§ State transition arcs must represent the fact that an input
subsequence has occurred. Thus, we get:

21

C

1/1

A B1/0 1/0
D

0/0

0/0

0/0 1/0

0/0

§ Note that the 1 arc from state C to state C implies that State C
means two or more 1's have occurred.

Formulation: Find State Table

§ From the state diagram, we
can fill in the state table.

§ There are 4 states, one input,
and one output. We will
choose the form with four
rows, one for each current
state.

§ From State A, the 0 and 1
input transitions have been
filled in along with the
outputs.

22

1/0

0/0

0/0

1/1

A B C
1/0

D
0/0

0/0

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A
B
C
D

A B 0 0
A
D
A

C
C
B

0
0
0

0
0
1

Note that state table can also be used to merge equivalent states.

1/0

0/0

What would the state diagram and state table look like for the Moore model?

Example: Moore Model for Sequence
1101
§ For the Moore model, outputs are associated with

states.

§ We need to add a state "E" with output value 1 for
the final 1 in the recognized input sequence.
• This new state E, though similar to B, would generate an

output of 1 and thus be different from B.

§ The Moore model for a sequence recognizer usually
has more states than the Mealy model.

23

Example: Moore Model (cont’d)

§ We mark outputs on states for Moore model
§ Arcs now show only state transitions
§ Add a new state E to produce the output 1

§ Note that the new state, E produces the same behavior in the future as state
B. But it gives a different output at the present time. Thus, these states do
represent a different abstraction of the input history.

24

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

110

Example: Moore Model (cont’d)

§ Fill in the state table according to the stable diagram
§ Memory aid re more state in the Moore model: “Moore is

More.”

25

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

110

Present
State

Next State
x=0 x=1

Output
y

A A B 0
B A C 0
C D C 0
D A E 0
E A C 1

State Assignment

§ Each of the m states must be assigned a unique code

§ Minimum number of bits required is n such that
 n ≥ log2m
where x is the smallest integer ≥ x

§ There are useful state assignments that use more than the
minimum number of bits

§ There are 2n - m unused states

26

State Assignment: Example 1

§ How many assignments of codes with a minimum number of
bits?
• Two: A = 0, B = 1 or A = 1, B = 0

§ Does it make a difference?
• Only in variable inversion, so small, if any.

27

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A A B 0 0
B A B 0 1

State Assignment: Example 2

§ How many assignments of codes with a minimum number of
bits?

§ Does code assignment make a difference in cost?

28

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

State Assignment: Example 2 (cont’d)

§ Counting Order Assignment: A = 00, B = 01, C = 10,
D = 11

§ The resulting coded state table:

29

Present
State
Y1 Y2

Next State
x = 0 x = 1
D1 D2 D1 D2

Output
 x = 0 x = 1

0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
1 0 1 1 1 0 0 0
1 1 0 0 0 1 0 1

State Assignment: Example 2 (cont’d)

§ Gray Code Assignment: A = 00, B = 01, C = 11, D =
10

§ The resulting coded state table:

30

Present
State
Y1 Y2

Next State
x = 0 x = 1
D1 D2 D1 D2

Output
 x = 0 x = 1

0 0 0 0 0 1 0 0
0 1 0 0 1 1 0 0
1 1 1 0 1 1 0 0
1 0 0 0 0 1 0 1

Find Flip-Flop Input and Output
Equations: Counting Order Assignment
§ Assume D flip-flops
§ Interchange the bottom two rows of the state table, to

obtain K-maps for D1, D2, and Z:

31

Y2

Y1

X

0

0
00

10
0

0

Y2

Y1

X

0

0
10

10
0

1

Y2

Y1

X

1

0
00

00
1

1

D1 D2 Z

§ Performing two-level optimization:

§ D1 = Y1Y2 + XY1Y2
D2 = XY1Y2 + XY1Y2 + XY1Y2
Z = XY1Y2

Optimization: Counting Order Assignment

32

Y2

Y1

X

0

0
00

10
0

0

Y2

Y1

X

0

0
10

10
0

1

Y2

Y1

X

1

0
00

00
1

1

D1 D2 Z

Gate Input Cost = ?

Find Flip-Flop Input and Output
Equations: Gray Code Assignment
§ Assume D flip-flops
§ Obtain K-maps for D1, D2, and Z:

33

Y2

Y1

X

1

0
00

00
0

0

Y2

Y1

X

1

0
10

10
1

0

Y2

Y1

X

0

0
00

11
1

0

D1 D2 Z

Optimization: Gray Code Assignment

§ Performing two-level optimization:

§ D1 = Y1Y2 + XY2
D2 = X
Z = XY1Y2 34

Gate Input Cost = ?

Y2

Y1

X

1

0
00

00
0

0

Y2

Y1

X

1

0
10

10
1

0

Y2

Y1

X

0

0
00

11
1

0

D1 D2 Z

Rules for State Assignment

§ States which have the same next state for a given input
should be given adjacent assignment.

§ States which are the next states of the same state should
be given adjacent assignment.

§ States which have the same output for a given input
should be given adjacent assignment (for output
simplification.)

35

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

Map Technology: Gray Code Assignment

§ D Flip-flops with Reset (not inverted)

36

Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

Initial circuit

Mapped Circuit

37

Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

§ NAND gates with up to 4 inputs and inverters

Final circuit

Design vs. Analysis: An Example

38

§ Logic diagram:

Clock
Reset

D

QC

Q

R

D

QC

Q

R

D

QC

Q

R

A

B

C

Z

Flip-Flop Input Equations

39

§ Variables
• Inputs: None
• Outputs: Z
• State Variables: A, B, C

§ Initialization: Reset to (0,0,0)
§ Equations
• A(t+1) = Z =
• B(t+1) =
• C(t+1) =

State Table

40

§ A(t+1) = BC
§ B(t+1) = #BC + B%C
§ C(t+1) = #A%C
§ Z = A

§ Let Y=X(t+1)

𝐀	𝐁	𝐂 YAYBYC Z
0 0 0 0 0 1 0
0 0 1 0 1 0 0
0 1 0 0 1 1 0
0 1 1 1 0 0 0
1 0 0 0 0 0 1
1 0 1 0 1 0 1
1 1 0 0 1 0 1
1 1 1 1 0 0 1

State Diagram

41

§ Which states are used?
§ What is the function of

the circuit?

000

011 010

001100

101

110

111

Reset ABC

Unused States: The State Assignment
Problem

42

§ The previous example has only 5 states, represented by 3-bit
values. So, we have three unused state assignments in this case.

§ This is no real problem, except that at power up, the machine
may start up in one of the unused states. Or, it could get into an
unused state due to electrical noise (lightning, bad connections,
etc).

§ One possibility is to add RESET logic to force the machine into
state 000 on power up, or on detect of unused state. If entry to
an unused state is considered fatal, then stop the FSM (force it
into an ERROR state, where it stays) and transmit an error code.

Unused States: In the hardware
Implementation of the FSM

43

§ A nasty problem is that of the machine appearing to freeze up if it
gets into an unused state. This can happen if the unused states point
to themselves or each other.

§ If all unused states point to used states, the machine is said to be "self
starting" and, after power up, will function correctly. If the machine
is self-starting, entering an unused state will cause a brief erratic
operation, then the machine will resume correct operation.

§ So, if the application is fault-tolerant, and the machine is self-starting,
we are OK to ignore the problem beyond verifying self start
capability.

§ We can guarantee self start (assuming state 000 is a state we are
using) by replacing the Xs in the implementation diagram above with
0s. This will force the machine into state 000 whenever an unused
state is entered. The problem, of course, is more complex steering
logic.

Flip-Flop Timing

44

§ E.g., D flip-flop
• tsetup - required time of stable input before CLK, input before CLK
• thold - required time of stable input after CLK, input after CLK
• tffpd - flip-flop propagation delay after CLK, aka Clk-to-Q time

Timing Diagram of Sequential Circuits

45

tclk ≥ tffpd + tcomb + tsetup
thold ≤ tffpd + tcomb

46

More Materials (Optional)

§ State Table & State Equation
§ Basic Flip-Flop Descriptors
§ Flip-Flop Behaviors

47

More Materials (Optional)

§ State Table & State Equation
§ Basic Flip-Flop Descriptors
§ Flip-Flop Behaviors

State Table: Two Alternative Forms

48

State Equation

§ The behavior of a clocked sequential circuit can be
described algebraically by means of state equations.

§ A state equation (aka next-state equation) specifies the next
state as a function of the present state and inputs.

§ Specifically, a state equation is an algebraic expression that
specifies the condition for a flip-flop state transition. The
left side of the equation with (t+1) denotes the next state of
the flip-flop one clock edge later. The right side of the
equation is Boolean expression that specifies the present
state and input conditions that make the next state equal to 1.

49

50

More Materials (Optional)

§ State Table & State Equation
§ Basic Flip-Flop Descriptors
§ Flip-Flop Behaviors

Basic Flip-Flop Descriptors

§ Used in analysis
• Characteristic table - defines the next state of the flip-

flop in terms of flip-flop inputs and current state
• Characteristic equation - defines the next state of the

flip-flop as a Boolean function of the flip-flop inputs
and the current state

§ Used in design
• Excitation table - defines the flip-flop input variable

values as function of the current state and next state
• Excitation equation (aka input equation) - defines the

combinational logic that drives the flip-flops

51

S-R Flip-Flop Descriptors

§ Characteristic Table

§ Characteristic Equation
 Q(t+1) = S + R . Q(t), S.R = 0

§ Excitation Table

0
0
1

1

OperationS

0
1
0

1

R

No change
Reset
Set

Undefined

0
1

?

Q(t +1)

Q(t)

Operation

No change
Set
Reset

No change

S

X

0
1
0

Q(t+1)

0
1

1

0

Q(t)

0
0

1

1

R

X
0
1

0

52

D Flip-Flop Descriptors

§ Characteristic Table

§ Characteristic Equation
 Q(t+1) = D

§ Excitation Table

D

0
1

Operation

Reset
Set

0
1

Q(t 1)+

Q(t +1)

0
1

0
1

D Operation

Reset
Set

53

J-K Flip-Flop Descriptors

§ Characteristic Table

§ Characteristic Equation
 Q(t+1) = J Q(t) + K Q(t)

§ Excitation Table
Q(t +1)

0
1

1
0

Q(t)

0
0

1
1

Operation

X
X

0
1

K

0
1

X
X

J

No change
Set
Reset
No Change

0
0
1
1

No change

Set
Reset

Complement

OperationJ

0
1
0
1

K

0
1

Q(t+1)

Q(t)

Q(t)

54

T Flip-Flop Descriptors

§ Characteristic Table

§ Characteristic Equation
 Q(t+1) = T Å Q

§ Excitation Table
+Q(t 1)

Q(t)
1
0

T

No change
Complement

Operation

Q(t)

55

No change
Complement

Operation

0
1

T Q(t 1)

Q(t)
Q(t)

+

56

More Materials (Optional)

§ State Table & State Equation
§ Basic Flip-Flop Descriptors
§ Flip-Flop Behaviors

Flip-flop Behavior Example

§ Use the characteristic tables to find the output waveforms for
the flip-flops shown:

T

C

Clock

D,T

QD

QT

D

C

57

Flip-Flop Behavior Example (continued)

§ Use the characteristic tables to find the output waveforms for
the flip-flops shown:

J
C

K

S
C
R

Clock

S,J

QSR

QJK

R,K

?

58

