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Overview

§ Introduction to sequential circuits
§ Basic sequential logic elements
§ Sequential logic design
§ Classic sequential logic elements
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Sequential logic design

§ Some definitions
§ The design procedure
§ State machine design
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Equivalent State 

§ Two states are equivalent if their response for each 
possible input sequence is an identical output 
sequence.

§ Alternatively, two states are equivalent if their 
outputs produced for each input symbol is identical 
and their next states for each input symbol are the 
same or equivalent.
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Equivalent State Example

§ For states S3 and S2
• the output for input

0 is 1 and input 1 is 0, and
• the next state for input

0 is S0 and for input
1 is  S2

§ By the alternative definition, states S3 and S2 are 
equivalent. 
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Equivalent State Example

§ Replacing S3 and S2
by a single state gives
state diagram:

§ Examining the new diagram,
states S1 and S2 are equivalent since
• their outputs for input

0 is 1 and input 1 is 0
• their next state for input

0 is S0 and for input
1 is  S2

§ Replacing S1 and S2 by a
single state gives state
diagram:
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Equivalent State Example

§ Replacing S3 and S2
by a single state gives
state diagram:

§ Examining the new diagram,
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Moore and Mealy Models

§ There are two formal models of FSMs:
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§ Moore model
• Named after E.F. 

Moore 
• Outputs are a function 

ONLY of states
• Usually specified on 

the states.

§ Mealy model
• Named after G. Mealy
• Outputs are a function 

of inputs AND states
• Usually specified on 

the state transition arcs.



Moore and Mealy Example

§ Moore model state table/diagram 
maps states to outputs

§ Mealy model state table/diagram 
maps inputs and state to outputs
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0 1

x=1/y=1

x=1/y=0

x=0/y=0

x=0/y=0

B/0 C/1

x=1x=1

x=0

x=0
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A/0Present 
State

Next State
x=0   x=1

Output

A A      B 0
B A      C 0
C A      C 1

Present 
State

Next State
x=0   x=1

Output
x=0   x=1

0 0      1 0      0
1 0      1 0      1



The Design Procedure

§ Specification
§ Formulation
• Obtain a state diagram or state table

§ State assignment 
• Assign binary codes to the states

§ Flip-flop input equation determination 
• Select flip-flop types and derive flip-flop equations from next state entries 

in the table
§ Output equation determination 
• Derive output equations from output entries in the table

§ Optimization 
• Optimize the equations

§ Technology mapping 
• Find circuit from equations and map to flip-flops and gate technology

§ Verification 
• Verify correctness of final design
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Formulation: Finding a State Diagram

§ A state is an abstraction of the history of the past applied 
inputs to the circuit (including  power-up reset or system 
reset). 
• The interpretation of “past inputs” is tied to the synchronous operation 

of the circuit. E.g., an input value (other than an asynchronous reset) is 
measured only during the setup-hold time interval for an edge-
triggered flip-flop.

§ Examples:
• State A represents the fact that a 1 input has occurred among the past 

inputs.
• State B represents the fact that a 0 followed by a 1 have occurred as the 

most recent past two inputs. 
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Formulation: Finding a State Diagram 
(cont’d)
§ In specifying a circuit, we use states to remember meaningful 

properties of past input sequences that are essential to 
predicting future output values.   

§ A sequence recognizer is a sequential circuit that produces a 
distinct output value whenever a prescribed pattern of input 
symbols occur in sequence, i.e., recognizes an input sequence 
occurrence.

§ We will develop a procedure specific to sequence recognizers 
to convert a problem statement into a state diagram.

§ Next, the state diagram, will be converted to a state table from 
which the circuit will be designed.
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Sequence Recognizer Procedure

§ To develop a sequence recognizer state diagram:
• Begin in an initial state in which NONE of the initial portion of the 

sequence has occurred (typically “reset” state).
• Add a state that recognizes that the first symbol has occurred.
• Add states that recognize each successive symbol occurring.
• The final state represents the input sequence (possibly less than the 

final input value) occurrence.
• Add state transition arcs which specify what happens when a symbol 

NOT in the proper sequence has occurred.
• Add other arcs on non-sequence inputs which transition to states that 

represent the input subsequence that has occurred.

§ The last step is required because the circuit must recognize the 
input sequence regardless of where it occurs within the 
overall sequence applied since “reset”.

14



Sequence Recognizer Procedure (cont’d)

§ Example:  Recognize the sequence 1101
• Note that the sequence 1111101 contains 1101 and "11" is a proper 

sub-sequence of 1101.   

§ Thus, the sequential machine must remember that the first two 
one's have occurred as it receives another symbol. 

§ Also, the sequence 1101101 contains 1101 as both an initial 
subsequence and a final subsequence with some overlap, i. e., 
1101101 or 1101101. 

§ And, the 1 in the middle, 1101101, is in both subsequences.
§ The sequence 1101 must be recognized each time it occurs in 

the input sequence.
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Example: Recognize 1101

§ Define states for the sequence to be recognized:
• assuming it starts with first symbol, 
• continues through each symbol in the sequence to be recognized, and 
• uses output 1 to mean the full sequence has occurred,
• with output 0 otherwise.

§ Starting in the initial state (Arbitrarily named "A"):
• Add a state that recognizes the first "1."

• State "A" is the initial state, and state "B" is the state which represents 
the fact that the "first" one in the input subsequence has occurred.   The 
output symbol "0" means that the full recognized sequence has not yet 
occurred.
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Example: Recognize 1101 (cont’d)

§ After one more 1, we have:
• C is the state obtained                                                                            

when the input sequence                                                                          
has two "1"s.
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A B1/0 C
1/0

A B1/0
C

1/0 0/0
D 1/1

§ Finally, after 110 and a 1, we have:

§ Transition arcs are used to denote the output function (Mealy model)
§ Output 1 on the arc from D means the sequence has been recognized
§ To what state should the arc from state D go? Remember:  1101101 ?
§ Note that D is the last state but the output 1 occurs for the input applied in 

D. This is the case when a Mealy model is assumed.



Example: Recognize 1101 (cont’d)

§ Clearly the final 1 in the recognized sequence 1101 is a sub-
sequence of 1101. 

§ It must be the first 1 in the sequence, since it cannot be 
preceded by a 1.  Thus it should represent the same state 
reached from the initial state after a first 1 is observed.  We 
obtain:
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Example: Recognize 1101 (cont’d)

§ The state have the following abstract meanings:
• A:  No proper sub-sequence of the sequence has occurred.
• B:  The sub-sequence 1 has occurred.
• C:  The sub-sequence 11 has occurred.
• D:  The sub-sequence 110 has occurred.
• The 1/1 on the arc from D to B means that the last 1 has occurred and 

thus, the sequence is recognized.
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Example: Recognize 1101 (cont’d)

§ The other arcs are added to each state for inputs not yet listed.  
Which arcs are missing?
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1/1

A B
1/0

C
1/0

D
0/0

§ Answer:
§  "0" arc from A 

                    "0" arc from B    
                                        "1" arc from C                   
                                                               "0" arc from D.



Example: Recognize 1101 (cont’d)

§ State transition arcs must represent the fact that an input 
subsequence has occurred.  Thus, we get:
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C

1/1

A B1/0 1/0
D

0/0

0/0

0/0 1/0

0/0

§ Note that the 1 arc from state C to state C implies that State C 
means two or more 1's have occurred.



Formulation: Find State Table 

§ From the state diagram, we 
can fill in the state table.

§ There are 4 states, one input, 
and one output. We will 
choose the form with four 
rows, one for each current 
state.

§ From State A, the 0 and 1 
input transitions have been 
filled in along with the 
outputs.
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1/0

0/0

0/0

1/1

A B C
1/0

D
0/0

0/0

Present 
State

Next State
x=0   x=1

Output
x=0   x=1

A
B
C
D

A B 0 0
A
D
A

C
C
B

0
0
0

0
0
1

Note that state table can also be used to merge equivalent states.

1/0

0/0

What would the state diagram and state table look like for the Moore model?



Example: Moore Model for Sequence 
1101
§ For the Moore model, outputs are associated with 

states.

§ We need to add a state "E" with output value 1 for 
the final 1 in the recognized input sequence.
• This new state E, though similar to B, would generate an 

output of 1 and thus be different from B.

§ The Moore model for a sequence recognizer usually 
has more states than the Mealy model.
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Example: Moore Model (cont’d)

§ We mark outputs on states for Moore model
§ Arcs now show only state transitions
§ Add a new state E to produce the output 1

§ Note that the new state, E produces the same behavior in the future as state 
B. But it gives a different output at the present time. Thus, these states do 
represent a different abstraction of the input history.
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Example: Moore Model (cont’d)

§ Fill in the state table according to the stable diagram
§ Memory aid re more state in the Moore model: “Moore is 

More.”
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A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

110

Present 
State

Next State
x=0     x=1

Output
y

A A  B 0
B A  C 0
C D  C 0
D A  E 0
E A  C 1



State Assignment

§ Each of the m states must be assigned a unique code

§ Minimum number of bits required is n such that
 n ≥   log2m
where   x  is the smallest integer ≥ x

§ There are useful state assignments that use more than the 
minimum number of bits

§ There are 2n - m unused states
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State Assignment: Example 1

§ How many assignments of codes with a minimum number of 
bits?
• Two: A = 0, B = 1 or A = 1, B = 0

§ Does it make a difference?
• Only in variable inversion, so small, if any.
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Present 
State

Next State
x=0     x=1

Output
x=0   x=1

A A  B 0   0
B A  B 0   1



State Assignment: Example 2

§ How many assignments of codes with a minimum number of 
bits?

§ Does code assignment make a difference in cost?
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Present 
State

Next State
x=0     x=1

Output
x=0   x=1

A A       B 0        0
B A       C 0        0
C D       C 0        0
D A       B 0        1



State Assignment: Example 2 (cont’d)

§ Counting Order Assignment: A = 00, B = 01, C = 10, 
D = 11

§ The resulting coded state table:
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Present 
State
Y1 Y2

Next State
x = 0 x = 1
D1 D2  D1 D2

Output
 x = 0 x = 1

0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
1 0 1 1 1 0 0 0
1 1 0 0 0 1 0 1



State Assignment: Example 2 (cont’d)

§ Gray Code Assignment: A = 00, B = 01, C = 11, D = 
10

§ The resulting coded state table: 
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Present 
State
Y1 Y2

Next State
x = 0 x = 1
D1 D2  D1 D2

Output
 x = 0 x = 1

0 0 0 0 0 1 0 0
0 1 0 0 1 1 0 0
1 1 1 0 1 1 0 0
1 0 0 0 0 1 0 1



Find Flip-Flop Input and Output 
Equations: Counting Order Assignment
§ Assume D flip-flops
§ Interchange the bottom two rows of the state table, to 

obtain K-maps for D1, D2, and Z:
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Y1

X

1

0
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00
1

1

D1 D2 Z



§ Performing two-level optimization:

§ D1 = Y1Y2 + XY1Y2
D2 = XY1Y2 + XY1Y2 + XY1Y2
Z   = XY1Y2

Optimization: Counting Order Assignment
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0
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D1 D2 Z

Gate Input Cost = ?



Find Flip-Flop Input and Output 
Equations: Gray Code Assignment
§ Assume D flip-flops
§ Obtain K-maps for D1, D2, and Z:
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Optimization: Gray Code Assignment

§ Performing two-level optimization:

§ D1 = Y1Y2 + XY2
D2 = X
Z   = XY1Y2 34

Gate Input Cost = ?
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Rules for State Assignment

§ States which have the same next state for a given input 
should be given adjacent assignment.

§ States which are the next states of the same state should 
be given adjacent assignment.

§ States which have the same output for a given input 
should be given adjacent assignment (for output 
simplification.)
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Present 
State

Next State
x=0     x=1

Output
x=0   x=1

A A       B 0        0
B A       C 0        0
C D       C 0        0
D A       B 0        1



Map Technology: Gray Code Assignment

§ D Flip-flops with Reset (not inverted)
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Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

Initial circuit



Mapped Circuit
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Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

§ NAND gates with up to 4 inputs and inverters

Final circuit



Design vs. Analysis: An Example
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§ Logic diagram:

Clock
Reset

D

QC

Q

R

D

QC

Q

R

D

QC

Q

R

A

B

C

Z



Flip-Flop Input Equations
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§ Variables
• Inputs: None
• Outputs: Z
• State Variables: A, B, C

§ Initialization: Reset to (0,0,0)
§ Equations
• A(t+1) =                        Z =
• B(t+1) = 
• C(t+1) = 



State Table
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§ A(t+1) = BC
§ B(t+1) = #BC + B%C
§ C(t+1) = #A%C
§ Z = A

§ Let Y=X(t+1)

𝐀	𝐁	𝐂 YAYBYC Z
0  0  0 0  0  1 0
0  0  1 0  1  0 0
0  1  0 0  1  1 0
0  1  1 1  0  0 0
1  0  0 0  0  0 1
1  0  1 0  1  0 1
1  1  0 0  1  0 1
1  1  1 1  0  0 1



State Diagram
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§ Which states are used?
§ What is the function of

the circuit?

000

011 010

001100

101

110

111

Reset ABC



Unused States: The State Assignment 
Problem
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§ The previous example has only 5 states, represented by 3-bit 
values. So, we have three unused state assignments in this case. 

§ This is no real problem, except that at power up, the machine 
may start up in one of the unused states. Or, it could get into an 
unused state due to electrical noise (lightning, bad connections, 
etc). 

§ One possibility is to add RESET logic to force the machine into 
state 000 on power up, or on detect of unused state. If entry to 
an unused state is considered fatal, then stop the FSM (force it 
into an ERROR state, where it stays) and transmit an error code.



Unused States: In the hardware 
Implementation of the FSM
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§ A nasty problem is that of the machine appearing to freeze up if it 
gets into an unused state. This can happen if the unused states point 
to themselves or each other. 

§ If all unused states point to used states, the machine is said to be "self 
starting" and, after power up, will function correctly. If the machine 
is self-starting, entering an unused state will cause a brief erratic 
operation, then the machine will resume correct operation. 

§ So, if the application is fault-tolerant, and the machine is self-starting, 
we are OK to ignore the problem beyond verifying self start 
capability. 

§ We can guarantee self start (assuming state 000 is a state we are 
using) by replacing the Xs in the implementation diagram above with 
0s. This will force the machine into state 000 whenever an unused 
state is entered. The problem, of course, is more complex steering 
logic. 



Flip-Flop Timing
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§ E.g., D flip-flop
• tsetup    - required time of stable input before CLK, input before CLK
• thold     - required time of stable input after CLK, input after CLK
• tffpd     - flip-flop propagation delay after CLK, aka Clk-to-Q time 



Timing Diagram of Sequential Circuits
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tclk ≥ tffpd + tcomb + tsetup
thold ≤ tffpd + tcomb
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More Materials (Optional)

§ State Table & State Equation
§ Basic Flip-Flop Descriptors
§ Flip-Flop Behaviors
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More Materials (Optional)

§ State Table & State Equation
§ Basic Flip-Flop Descriptors
§ Flip-Flop Behaviors



State Table: Two Alternative Forms
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State Equation

§ The behavior of a clocked sequential circuit can be 
described algebraically by means of state equations.

§ A state equation (aka next-state equation) specifies the next 
state as a function of the present state and inputs.

§ Specifically, a state equation is an algebraic expression that 
specifies the condition for a flip-flop state transition. The 
left side of the equation with (t+1) denotes the next state of 
the flip-flop one clock edge later. The right side of the 
equation is Boolean expression that specifies the present 
state and input conditions that make the next state equal to 1. 
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More Materials (Optional)

§ State Table & State Equation
§ Basic Flip-Flop Descriptors
§ Flip-Flop Behaviors



Basic Flip-Flop Descriptors

§ Used in analysis
• Characteristic table - defines the next state of the flip-

flop in terms of flip-flop inputs and current state 
• Characteristic equation - defines the next state of the 

flip-flop as a Boolean function of the flip-flop inputs 
and the current state

§ Used in design
• Excitation table - defines the flip-flop input variable 

values as function of the current state and next state
• Excitation equation (aka input equation) - defines the 

combinational logic that drives the flip-flops

51



S-R Flip-Flop Descriptors

§ Characteristic Table

§ Characteristic Equation
 Q(t+1) = S + R . Q(t), S.R = 0

§ Excitation Table

0
0
1

1

OperationS

0
1
0

1

R

No change
Reset
Set

Undefined

0
1

?

Q(t +1)

Q(t)

Operation

No change
Set
Reset

No change

S

X

0
1
0

Q(t+1)

0
1

1

0

Q(t)

0
0

1

1

R

X
0
1

0
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D Flip-Flop Descriptors

§ Characteristic Table

§ Characteristic Equation
 Q(t+1) = D

§ Excitation Table

D

0
1

Operation

Reset
Set

0
1

Q(t 1)+

Q(t +1)

0
1

0
1

D Operation

Reset
Set
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J-K Flip-Flop Descriptors

§ Characteristic Table

§ Characteristic Equation
 Q(t+1) = J Q(t) + K Q(t)

§ Excitation Table
Q(t +1)

0
1

1
0

Q(t)

0
0

1
1

Operation

X
X

0
1

K

0
1

X
X

J

No change
Set
Reset
No Change

0
0
1
1

No change

Set
Reset

Complement

OperationJ

0
1
0
1

K

0
1

Q(t+1)

Q(t)

Q(t)
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T Flip-Flop Descriptors

§ Characteristic Table

§ Characteristic Equation
 Q(t+1) = T Å Q

§ Excitation Table
+Q(t 1)

Q(t)
1
0

T

No change
Complement

Operation

Q(t)
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No change
Complement

Operation

0
1

T Q(t 1)

Q(t)
Q(t)

+
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More Materials (Optional)

§ State Table & State Equation
§ Basic Flip-Flop Descriptors
§ Flip-Flop Behaviors



Flip-flop Behavior Example

§ Use the characteristic tables to find the output waveforms for 
the flip-flops shown:

T

C

Clock

D,T

QD

QT

D

C
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Flip-Flop Behavior Example (continued)

§ Use the characteristic tables to find the output waveforms for 
the flip-flops shown:

J
C

K

S
C
R

Clock

S,J

QSR

QJK

R,K

?
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