
System I

Bo Feng, Lei Wu, Rui Chang

Zhejiang University

Instruction Set Architecture

§ Many images and resources used in this lecture are
collected from the Internet, and they are used only for
the educational purpose. The copyright belong to the
original owners, respectively.

§ Part of slides credit to
• David Money Harris and Sarah L. Harris. Digital Design and

Computer Architecture, 2nd Edition.
• ECE C61, Prof. Alok N. Choudhary @ Northwestern University
• Computer Organization, Prof. Sukumar Ghosh @ University of Iowa
• ECE 4100/6100, Prof. Hsien-Hsin Sean Lee @ Georgia Institute of

Technology

Disclaimer

2

Overview

§ Introduction to ISA
§ About ISA design

3

Overview

§ Introduction to ISA
§ About ISA design

4

Instruction Set Architecture (ISA)

5

Application

Compiler / Libraries of Macros and Procedures

Operating System (OS)

Instruction Set Architecture (ISA)

Computer Organization (Micro Architecture)

Register Transfer Level (RTL)

Digital Logic Circuit (DLC)

Device Technology

Software

Hardware

What is An Instruction?

§ Instruction = opcode + operands
§ Elements of an instruction
• Operation code (Opcode)

§ Do this

• Source Operand reference(s)
§ To this

• Result Operand reference(s)
§ Put the answer here

• Next Instruction Reference
§ When you are done, do this instruction next

6

Where Are the Operands?

§ Main memory
§ CPU register
§ I/O device
§ In instruction itself

§ To specify which register, which memory location, or
which I/O device, we’ll need some addressing scheme
for each

7

Instruction Formats

§ Instruction length
• Whether short, long, or variable

§ Number of operands
• 3/2/1/0

§ Number of addressable registers
§ Memory organization
• Whether byte- or word addressable

§ Addressing modes
• Choose any or all: direct, indirect or indexed

8

Instruction Set

§ The complete collection of instructions that are
understood by a CPU

§ The instruction set is ultimately represented in binary
machine code also referred to as object code
• Usually represented by assembly code to human

programmer

9

Instruction Set Architecture (ISA)

§ The physical hardware that is controlled by the instructions is
referred to as the Instruction Set Architecture (ISA)
• One can think of an ISA as a hardware functionality of a given computer.
• ISA refers to the actual programmer visible machine interface such as

instruction set, registers, memory organization and exception (i.e.,
interrupt) handling.

§ Also called (computer) architecture
• Implementation --> actual realization of ISA
• ISA can have multiple implementations
• ISA allows software to direct hardware
• ISA defines machine language

10

Instruction Set Architecture (ISA)

§ Specification of a microprocessor design
• The ISA defines the CPU, or a CPU family (e.g., x86)

§ Not only a collection of instructions,
§ Includes the CPU view of memory, registers number and roles, etc.

• ISA ≠ CPU architecture (μ-architecture)
§ E.g., x86: Xeon ≠ Celeron, same ISA

§ Interface between user and machine’s functionality
• The ISA is the contract between s/w and h/w

11

instruction set

High level language code : C, C++, Java, Fortran,

hardware

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns
software

compiler

assembler

ISA Specifies How the Computer
Changes State

12

Different ISAs: More Like Regional
Dialects

13

Some Thoughts of Instruction Formats

§ Short instruction length
§ Enough bits reserved for new opcodes
§ Distinct encoding and the illustration
§ Number of operands
§ Instruction alignment
• Byte-/word- level alignment

§ Always keep regularity
• Fixed instruction length
• Fixed bits of opcodes
• Fixed placement of operands
• …

14

Design Principles

§ Underlying design principles, as articulated by
Hennessy and Patterson:
• Simplicity favors regularity
• Make the common case fast
• Smaller is faster
• Good design demands good compromises

15

Design Principles

§ Simplicity favors regularity
• E.g., instruction size, instruction formats, data formats
• Eases implementation by simplifying hardware

§ Make the common case fast
• Fewer bits to read, move, & write
• Use/reuse the register file instead of memory

§ Smaller is faster
• E.g., small constants are common, thus immediate fields can

be small

§ Good design demands good compromises
• Special formats for important exceptions
• E.g., a jump far away (beyond a small constant)

16

Overview

§ Introduction to ISA
§ About ISA design
• Issues in the design
• Operands and addressing modes
• Types of operations and encodings
• Evolution and classification

17

About ISA Design

§ Issues in the design
§ Operands and addressing modes
§ Types of operations and encodings
§ Evolution and classification

18

Basic Design Issues

§ What data types are supported and what size
§ What operations (and how many) should be provided

• LD/ST/INC/BRN sufficient to encode any computation, or just Sub and Branch!
• But not useful because programs too long!

§ How (and how many) operands are specified
• Most operations are dyadic (e.g., A <- B + C)
• Some are monadic (e.g., A <- ~B)

§ Location of operands and result
• Where other than memory?
• How many explicit operands?
• How are memory operands located?
• Which can or cannot be in memory?
• How are they addressed

§ How to encode these into consistent instruction formats
• Instructions should be multiples of basic data/address widths
• Encoding

19

Typical instruction set:

• 32-bit word
• Basic operand addresses are 32 bits long
• Basic operands, like integers, are 32 bits
long
• In general case, instruction could reference
3 operands (A := B + C)

Typical challenge:

• Encode operations in a small number of
bits

About ISA Design

§ Issues in the design
§ Operands and addressing modes
§ Types of operations and encodings
§ Evolution and classification

20

Operands

§ One important design factor is the number of operands contained in each
instruction
• Has a significant impact on the word size and complexity of the CPU
• E.g., lots of operands generally implies longer word size needed for an instruction

§ Consider how many operands we need for an ADD instruction
• If we want to add the contents of two memory locations together, then we need to

be able to handle at least two memory addresses
• Where does the result of the add go? We need a third operand to specify the

destination
• What instruction should be executed next?

§ Usually the next instruction, but sometimes we might want to jump or branch
somewhere else

§ Do we need a fourth operand to specify the next instruction to execute?

§ If all of these operands are memory addresses, we need a really long
instruction!

21

Number of Operands

§ In practice, we won’t really see a four-address instruction.
• Too much additional complexity in the CPU
• Long instruction word
• All operands won’t be used very frequently

§ Most instructions have one, two, or three operand addresses
• The next instruction is obtained by incrementing the program counter, with the

exception of branch instructions

§ Let’s describe a hypothetical set of instructions to carry out the
computation for:

Y = (A-B) / (C + (D * E))

22

Three-Operand Instructions

§ If we had a three-operand instruction, we could specify two
source operands and a destination to store the result.

§ Here is a possible sequence of instructions for our equation:
Y = (A-B) / (C + (D * E))

• SUB R1, A, B ; Register R1 ← A - B
• MUL R2, D, E ; Register R2 ← D * E
• ADD R2, R2, C ; Register R2 ← R2 + C
• DIV R1, R1, R2 ; Register R1 ← R1 / R2

§ The three-address format is fairly convenient because we have
the flexibility to dictate where the result of computations should
go. Note that after this calculation is done, we haven’t changed
the contents of any of our original locations A, B, C, D, or E.

23

Two-Operand Instructions

§ How can we cut down the number of operands?
• Might want to make the instruction shorter

§ Typical method is to assign a default destination
operand to hold the results of the computation
• Result always goes into this operand
• Overwrites the old data in that location

§ Let’s say that the default destination is the first operand
in the instruction
• First operand might be a register, memory, etc.

24

Two-Operand Instructions
§ Here is a possible sequence of instructions for our equation (say the operands are

registers):
Y = (A-B) / (C + (D * E))

• SUB A, B ; Register A ← A - B
• MUL D, E ; Register D ← D * E
• ADD D, C ; Register D ← D + C
• DIV A, D ; Register A ← A / D

§ Get same end result as before, but we changed the contents of registers A and D
§ If we had some later processing that wanted to use the original contents of those

registers, we must make a copy of them before performing the computation
• MOV R1, A ; Copy A to register R1
• MOV R2, D ; Copy D to register R2
• SUB R1, B ; Register R1 ← R1 - B
• MUL R2, E ; Register R2 ← R2 * E
• ADD R2, C ; Register R2 ← R2 + C
• DIV R1, R2 ; Register R1 ← R1 / R2

§ Now the original registers for A-E remain the same as before, but at the cost of some
extra instructions to save the results.

25

One-Operand Instructions

§ Can use the same idea to get rid of the second operand, leaving only one
operand

§ The second operand is left implicit; e.g., could assume that the second operand
will always be in a register such as the Accumulator:

Y = (A-B) / (C + (D * E))
• LDA D ; Load ACC with D
• MUL E ; Acc ← Acc * E
• ADD C ; Acc ← Acc + C
• STO R1 ; Store Acc to R1
• LDA A ; Acc ← A
• SUB B ; Acc ← A-B
• DIV R1 ; Acc ← Acc / R1

§ Many early computers relied heavily on one-address based instructions, as it
makes the CPU much simpler to design. As you can see, it does become
somewhat more unwieldy to program.

26

Zero-Operand Instructions

§ In some cases, we can have zero-operand instructions
§ Uses the Stack
• Section of memory where we can add and remove items in

LIFO order
§ Last In, First Out

• Envision a stack of trays in a cafeteria; the last tray placed on
the stack is the first one someone takes out
• The stack in the computer behaves the same way, but with

data values
§ PUSH A ; Places A on top of stack
§ POP A ; Removes value on top of stack and puts result in A
§ ADD ; Pops top two values off stack, pushes result back on

27

Stack-Based Instructions

Y = (A-B) / (C + (D * E))
§ Instruction Stack Contents (stack increase ->)
§ PUSH B ; B
§ PUSH A ; B, A
§ SUB ; (A-B)
§ PUSH E ; (A-B), E
§ PUSH D ; (A-B), E, D
§ MUL ; (A-B), (E*D)
§ PUSH C ; (A-B), (E*D), C
§ ADD ; (A-B), (E*D+C)
§ DIV ; (A-B) / (E*D+C)

28

How many operands are best?

§ More operands
• More complex (powerful?) instructions
• Fewer instructions per program

§ More registers
• Inter-register operations are quicker

§ Fewer operands
• Less complex (powerful?) instructions
• More instructions per program
• Faster fetch/execution of instructions

29

Design Tradeoff Decisions

§ Operation repertoire
• How many ops?
• What can they do?
• How complex are they?

§ Data types
• What types of data should ops perform on?

§ Registers
• Number of registers, what ops on what registers?

§ Addressing
• Mode by which an address is specified (more on this later)

30

Addressing

§ Addressing modes specify where an operand is
located.

§ They can specify a constant, a register, or a memory
location.

§ The actual location of an operand is its effective
address.

§ Certain addressing modes allow us to determine the
address of an operand dynamically.

31

Addressing Modes

§ Addressing refers to how an operand refers to the
data we are interested in for a particular instruction

§ In the Fetch part of the instruction cycle, there are
several common ways to handle addressing in the
instruction
• Immediate
• Direct
• Indirect
• Register Direct/Indirect
• Relative, Indexed and Based

32

Immediate Addressing

§ The operand directly contains the value we are
interested in working with
• E.g., ADD #5

§ Means add the number 5 to something

• This uses immediate addressing for the value 5
• The two’s complement representation for the number 5 is

directly stored in the ADD instruction
• Must know value at assembly time

33

Direct Addressing

§ The operand contains an address with the data
• E.g., ADD 100

§ Means to add (Contents of Memory Location 100) to something

• Downside: Need to fit entire address in the instruction, may
limit address space
§ E.g., 32-bit word size and 32-bit addresses. Do we have a problem

here?
§ Some solutions: specify offset only, use implied segment

• Must know address at assembly time

34

Indirect Addressing

§ The operand contains an address, and that address contains the
address of the data
• E.g., Add [100]

§ Means “The data at memory location 100 is an address. Go to the address
stored there and get that data and add it to the Accumulator”

• Downside: Requires additional memory access
• Upside: Can store a full address at memory location 100

§ First address must be fixed at assembly time, but second address can change
during runtime! This is very useful for dynamically accessing different
addresses in memory (e.g., traversing an array)

§ Indirect Addressing can be thought of as additional instruction
subcycle

35

Register Direct/Indirect Addressing

§ Can do direct addressing with registers
• E.g., ADD R5

§ Means to add (Contents of Register 5) to something

• Upside: Not that many registers, don’t have previous
problem of the direct addressing

§ Can also do indirect addressing with registers
• E.g., Add [R3]

§ Means “The data in register 3 is an address. Go to that address in
memory, get the data, and add it to the Accumulator”

36

Other Addressing Modes

§ Relative addressing uses the PC register as an offset, which is
added to the address in the operand to determine the effective
address of the data.

§ Indexed addressing uses a register (implicitly or explicitly) as
an offset, which is added to the address in the operand to
determine the effective address of the data.

§ Based addressing is similar except that a base register is used
instead of an index register.

§ The difference between Indexed addressing and Based
addressing is that an index register holds an offset relative to
the address given in the instruction, a base register holds a base
address where the address field represents a displacement from
this base.

37

Summary - Addressing Modes

38

Addressing Example

§ What value is loaded into the accumulator for each addressing
mode?

39

Load 800

Load 800

Load 800
Load R1[800]

Addressing Example

§ These are the values loaded into the accumulator for each
addressing mode.

40
Load R1 Using Indirect Addressing?

Load 800

Load 800

Load 800
Load R1[800]

About ISA Design

§ Issues in the design
§ Operands and addressing modes
§ Types of operations and encodings
§ Evolution and classification

41

Types of Operations

§ Arithmetic and Logic
§ Shift
§ Data Transfer
• E.g., MOV/LOAD/STORE

§ String
§ Control
• BRANCH/JMP/CALL/RET/…

§ System
• HALT/INTERRUPT ON/INTERRUPT OFF/SWITCH…

§ Input/Output
§ …

42

Typical Operations (little change since
1960)

43

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear

Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return

Interrupt trap, return

Synchronization test & set (atomic r-m-w)

String search, translate
Graphics (MMX) parallel subword ops (4 16bit add)

Types of Encodings

§ If code size is most important, use variable length instructions
§ If performance is most important, use fixed length instructions
§ Recent embedded machines (ARM, MIPS) added optional mode to execute subset of

16-bit wide instructions (Thumb, MIPS16); per procedure decide performance or
density

§ Some architectures actually exploring on-the-fly decompression for more density.
44

Variable:

Fixed:

Hybrid:

…
…

About ISA Design

§ Issues in the design
§ Operands and addressing modes
§ Types of operations and encodings
§ Evolution and classification

45

Evolution of Instruction Sets

46

Single Accumulator (EDSAC 1950, Maurice Wilkes)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
 from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)
CISC

Intel x86, Pentium

CISC

§ Complex Instruction Set Computers

§ Close “semantic gap” between programming and
execution
• Smaller code size (memory was expensive!)
• Simplify compilation

§ Another state machine (controlled by microcode) inside
the machine

§ Example: x86, Intel 432, IBM 360, DEC VAX
47

CISC Example: x86

§ MOVSD ;; move a double word, 1-byte instruction

 MOVSD // m32[DS:EDI] = m32[DS:ESI]

§ REP;; 1-byte prefix to repeat string operations

 REP MOVSD // count set up in ECX

 LOCK ADD ds:[esi+ecx*2+0x67452301], 0xEFCDAB89 // 13-byte

 F0 3E 81 84 4E 01 23 45 67 89 AB CD EF

48[--][--]+disp32 ESI+ECX*2

prefix

RISC

§ Observation made by IBM (John Cocke, Eckert-Mauchly
Award’85, Turing Award’87,…)
• Few of the available instructions are used

§ CISC : “n+1” phenomenon
• Adding an instruction requiring an extra level of decoding logic can slow

down the entire ISA

§ Reduced Instruction Set Computer
• Originated at IBM in 1975, a telephone project
• To achieve 12 MIPS (300 calls per sec, 20k inst per call)
• Simple instructions
• IBM 801 in 1978
• More compiler effort to gain performance

49

A Typical RISC

§ Smaller number of instructions
§ Fixed format instruction (e.g., 32 bits)
§ 3-address, reg-to-reg arithmetic instructions
§ Single cycle operation for execution
§ Load-store architecture
§ Simple address modes
• Base + displacement

§ No indirection
§ Simple branch conditions
§ Hardwired control (No microcode)
§ More compiler effort
§ Examples:
• RISC I and RISC II at Berkeley
• MIPS (Microprocessors without Interlocked Pipe Stage) at Stanford
• IBM RISC Technology, Sun Sparc, HP PA-RISC, ARM

50

RISC Example: MIPS

51

Op
31 26 01516202125

Rs Rt immediate

Op
31 26 025

Op
31 26 01516202125

Rs Rt

target

Rd Funct

R-format (Register-Register)
561011

I-format (Register-Immediate)

Op
31 26 01516202125

Rs Rt immediate

I-format (Branch)

J-format (Jump / Call)

Shamt

Op
31 26 01516202125

Base Dest immediate

I-format (Load/Store)

add $1, $2, $3

addi $1, $2, -5

lw $1, 24($9)

beq L1, $4, $0

j L2

CISC vs. RISC

§ Some definitions were from the paper by Colwell et al. in 1985 52

CISC RISC
Variable length instructions Fixed-length instructions, single-cycle

operation

Abundant instructions and addressing
modes

Fewer instructions and addressing
modes

Long, complex decoding Simple decoding

Contain mem-to-mem operations Load/store architecture

Use microcode No microinstructions, directly decoded
and executed by HW logic

Closer semantic gap (shift complexity
to microcode)

Needs smart compilers, or intelligent
hardware to reorder instructions

IBM 360, DEC VAX, x86, Moto 68030 IBM 801, MIPS, RISC I, IBM POWER,
Sun Sparc

CISC vs. RISC (Reality)

53

IBM
370/168

VAX
11/780

Xerox
Dorado

IBM
801

Berkeley
RISC1

Stanford
MIPS

Year
introduced

1973 1978 1978 1980 1981 1983

instructions

208 303 270 120 39 55

Microcode 54KB 61KB 17KB 0 0 0
Instruction

size
2 to 6 B 2 to 57 B 1 to 3 B 4B 4B 4B

Execution
model

Reg-reg
Reg-mem
Mem-mem

Reg-reg
Reg-mem

Mem-
mem

Stack Reg-reg Reg-reg Reg-reg

CISC RISC

Observation and Controversy

§ “Instruction Set and Beyond: Computers, Complexity and
Controversy” by Bob Colwell (Eckert-Mauchly Award, 2005)
and gang from CMU, also see response from RISC camp:
Patterson (Eckert-Mauchly Award, 2008) and Hennessy (Eckert-
Mauchly Award, 2001)

§ CISC/RISC classification should *NOT* be a dichotomy!

§ Case in point: MicroVAX-32 by DEC, a single chip
implementation
• Subsetting VAX instructions (but still, 175 instructions!)
• Emulate complex instructions
• A RISC or a CISC? (Well, it has variable length instructions, not a ld/st

machine, with a microcode control, have all VAX addressing mode)
54

Observation and Controversy

§ Effective processor design = CISC experiences + RISC tenets

§ RISC features are not incompatible or mutually exclusive
• Large register file (w/ register windows)

§ RISC/CISC issues are best considered in light of their function-
to-implementation level assignment

55

Modern X86 Machine Design

§ CISC outfit + RISC inside

§ E.g., Intel P6/Netburst/Core, AMD Athlon/Phenom/Opteron

§ Each x86 instruction is decoded into “micro-op” (µ op) or
“RISC-op” on-the-fly

§ Internal microarchitecture resembles RISC design philosophy

§ Processor dynamically schedules “µ ops”

§ Compiler’s scheduling is still beneficial
56

Recent ISA Design Trend

§ Look at this instruction in MIPS (CISC or RISC?)
 CABS.LE.PS $fcc0, $f8, $f10 ;; |y|≤|w| , |x| ≤ |w|?

§ Many complex instructions emerged for new apps
• Viterbi instruction for wireless communication/DSP
• Sum of absolute differences in SSE (PSAD) or other DSP: C = ∑|A-B| for MPEG

(motion estimation)

§ In embedded domain, code size is critical
§ Reducing programming efforts
§ Optimizing performance via
• Specialized hardware (accelerator-based)
• Co-processor (controlled by main processor)
• ISA plug-in (flexible)

57

Classification of ISAs

58

§ Accumulator (before 1960, e.g., 68HC11):
• 1-address add A acc ← acc + mem[A]

§ Stack (1960s to 1970s):
• 0-address add tos ← tos + next

§ Memory-Memory (1970s to 1980s):
• 2-address add A, B mem[A] ← mem[A] + mem[B]
• 3-address add A, B, C mem[A] ← mem[B] + mem[C]

§ Register-Memory (1970s to present, e.g., 80x86):
• 2-address add R1, A R1 ← R1 + mem[A]

 load R1, A R1 ← mem[A]

§ Register-Register (Load/Store) (1960s to present, e.g., MIPS):
• 3-address add R1, R2, R3 R1 ← R2 + R3

 load R1, R2 R1 ← mem[R2]

 store R1, R2 mem[R1] ← R2

Operand Locations in Four ISA Classes

59

GPR

Code Sequence C = A + B
for Four Instruction Sets

60

Stack Accumulator Register
(register-memory)

Register (load-
store)

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1, A
Add R1, B
Store C, R1

Load R1,A
Load R2, B
Add R3, R1, R2
Store C, R3

memory memory
acc = acc + mem[C] R1 = R1 + mem[C] R3 = R1 + R2

More About General Purpose Registers

61

§ Why do almost all new architectures use GPRs?
• Registers are much faster than memory (even cache)

§ Register values are available immediately
§ When memory isn’t ready, processor must wait (“stall”)

§ Registers are convenient for variable storage
§ Compiler assigns some variables just to registers
§ More compact code since small fields specify registers

(compared to memory addresses)

Registers Cache

MemoryProcessor Disk

Stack Architectures

62

Stacks: Pros and Cons

63

§ Pros
• Good code density (implicit top of stack)
• Low hardware requirements
• Easy to write a simpler compiler for stack architectures

§ Cons
• Stack becomes the bottleneck
• Little ability for parallelism or pipelining
• Data is not always at the top of stack when need, so

additional instructions like TOP and SWAP are needed
• Difficult to write an optimizing compiler for stack

architectures

Accumulator Architectures

64

Accumulators: Pros and Cons

65

§ Pros
• Very low hardware requirements
• Easy to design and understand

§ Cons
• Accumulator becomes the bottleneck
• Little ability for parallelism or pipelining
• High memory traffic

Memory-Memory Architectures

66

Memory-Memory: Pros and Cons

67

§ Pros
• Requires fewer instructions (especially if 3 operands)
• Easy to write compilers for (especially if 3 operands)

§ Cons
• Very high memory traffic (especially if 3 operands)
• Variable number of clocks per instruction
•With two operands, more data movements are

required

Register-Memory Architectures

68

Register-Memory: Pros and Cons

69

§ Pros
• Some data can be accessed without loading first
• Instruction format easy to encode
• Good code density

§ Cons
• Operands are not equivalent (poor orthogonal)
• Variable number of clocks per instruction
• May limit number of registers

Load-Store Architectures

70

Load-Store: Pros and Cons

71

§ Pros
• Simple, fixed length instruction encodings
• Instructions take similar number of cycles
• Relatively easy to pipeline and make superscalar

§ Cons
• Higher instruction count
• Not all instructions need three operands
• Dependent on good compiler

Registers:
Advantages and Disadvantages

72

§ Advantages
• Faster than cache or main memory (no addressing mode or tags)
• Deterministic (no misses)
• Can replicate (multiple read ports)
• Short identifier (typically 3 to 8 bits)
• Reduce memory traffic

§ Disadvantages
• Need to save and restore on procedure calls and context switch
• Can’t take the address of a register (for pointers)
• Fixed size (can’t store strings or structures efficiently)
• Compiler must manage
• Limited number

Every ISA designed after 1980 uses a load-store ISA (i.e., RISC, to simplify CPU design).

