
System I

Bo Feng, Lei Wu, Rui Chang

Zhejiang University

Instruction Set Architecture



§ Many images and resources used in this lecture are 
collected from the Internet, and they are used only for 
the educational purpose. The copyright belong to the 
original owners, respectively. 

§ Part of slides credit to
• David A. Patterson and John L. Hennessy. Computer Organization and Design 

RISC-V Edition: The Hardware Software Interface, 1st Edition.
• John L. Hennessy and David A. Patterson. Computer Architecture: A 

Quantitative Approach, 6th Edition.
• Andrew Waterman and David A. Patterson. The RISC-V Reader: An Open 

Architecture Atlas.
• CSCE 513, Prof. Yonghong Yan @ University of North Carolina at Charlotte
• CENG3420, Bei Yu @ The Chinese University of Hong Kong
• CS 3410, Prof. Hakim Weatherspoon @ Cornell University
• CS 162, Prof. Sam Kumar @ UC Berkeley
• CSc 453, Prof. Saumya Debray @ University of Arizona

Disclaimer

2



Overview

§ RISC-V ISA
§ RISC-V Assembly Language

3



Overview

§ RISC-V ISA
§ RISC-V Assembly Language

4



What is RISC-V?

§ RISC-V (pronounced "risk-five”) is an ISA standard
• An open-source implementation of a reduced instruction set computing (RISC) 

based instruction set architecture (ISA)
• There was RISC-I, II, III, IV before

§ Most ISAs: X86, ARM, Power, MIPS, SPARC
• Commercially protected by patents
• Preventing practical efforts to reproduce the computer systems. 

§ RISC-V is open
• Permitting any person or group to construct compatible computers
• Use associated software

§ Originated in 2010 by researchers at UC Berkeley
• Krste Asanović, David Patterson and students

§ ISA Specifications
• Unprivileged specification version 20191213 (v2.2)
• Privileged specification version 20211203 (v1.11)
• More on github: https://github.com/riscv/riscv-isa-manual

5

https://riscv.org/

https://riscv.org/technical/specifications/


Goals in Defining RISC-V

§ A completely open ISA that is freely available to academia and 
industry 

§ A real ISA suitable for direct native hardware implementation, 
not just simulation nor binary translation

§ An ISA that avoids “over-architecting” for
• A particular microarchitecture style (e.g., microcoded, in-order, decoupled, out-of-

order) or
• Implementation technology (e.g., full-custom, ASIC, FPGA), but which allows 

efficient implementation in any of these

§ RISC-V ISA includes
• A small base integer ISA, usable by itself as a base for customized accelerators or 

for educational purposes, and
• Optional standard extensions, to support general-purpose software development
• Optional customer extensions

§ Support for the revised 2008 IEEE-754 floating-point standard
6



RISC-V Principles

§ Generally kept very simple and extendable
• Whether short, long, or variable

§ Separated into multiple specifications
• User-level ISA spec (compute instructions)
• Compressed ISA spec (16-bit instructions)
• Privileged ISA spec (supervisor-mode instructions)
• More…

§ ISA support is given by RV + word-width + extensions 
supported
• E.g., RV32I means 32-bit RISC-V with support for the I (integer) 

instruction set

7



User-Level ISA

§ Defines the normal instructions needed for computation
• A mandatory base integer ISA

§ I: Integer instructions:
• ALU
• Branches/jumps
• Loads/stores

• Standard extensions
§ M: Integer Multiplication and Division
§ A: Atomic Instructions
§ F: Single-Precision Floating-Point
§ D: Double-Precision Floating-Point
§ C: Compressed Instructions (16 bit)
§ G = IMAFD: integer base + four standard extensions

• Optional extensions

8



Basic RISC-V ISA

§ Both 32-bit and 64-bit 
address space variants
• RV32 and RV64

§ Easy to subset/extend for 
education/research
• RV32IM, RV32IMA, 

RV32IMAFD, RV32G

§ SPEC on the website
• www.riscv.org

9



RISC-V Processor State

§ Program counter (PC)
§ 32 32/64-bit integer 

registers (x0-x31)
• x0 always contains a 0
• x1 to hold the return address 

on a call.

§ 32 floating-point (FP) 
registers (f0-f31)
• Each can contain a single- or 

double-precision FP value 
(32-bit or 64-bit IEEE FP)

§ FP status register (fsr), 
used for FP rounding mode 
& exception reporting

10



RV32I

11



ALU Instructions

12



Load/Store Instructions

13



Control Transfer Instructions

14



RISC-V Dynamic Instruction Mix for 
SPECint2006

15



RISC-V Hybrid Instruction Encoding

§ 16, 32, 48, 64, … bits length encoding
§ Base instruction set (RV32) always has fixed 32-bit 

instructions with lowest two bits = 112

§ All branches and jumps have targets at 16-bit granularity 
(even in base ISA where all instructions are fixed 32 bits)

16



Four Core RISC-V Instruction Formats

§ https://github.com/riscv/riscv-opcodes/

17

Additional opcode 
bits/immediate Additional opcode bits 7-bit opcode field 

(but low 2 bits = 112)

Reg. Source 2 Reg. Source 1 Destination Reg. 

Aligned on a four-byte boundary in memory. There are variants!
Sign bit of immediates always on bit 31 of instruction. Register fields never move.



RISC-V Encoding Summary

18

Name Field
Comments

Field size 7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R-type funct7 rs2 rs1 funct3 rd opcode Arithmetic 
instruction format

I-type imm[11:0] rs1 funct3 rd opcode Loads & immediate 
arithmetic

S-type imm[11:5] rs2 rs1 funct3 imm[4:0] opcode Stores

B-type imm[12,10:5] rs2 rs1 funct3 imm[4:1,11] opcode Conditional branch 
format

J-type imm[20,10:1,11,19:12] rd opcode Unconditional jump 
format

U-type imm[31:12] rd opcode Upper immediate 
format



Immediate Encoding Variants

§ S-type vs. B-type
• The 12-bit immediate field is used to encode branch offsets in multiples of 2 in the B 

format. Instead of shifting all bits in the instruction-encoded immediate left by one in 
hardware as is conventionally done, the middle bits (imm[10:1]) and sign bit stay in fixed 
positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B format.

§ U-type vs. J-type
• Similarly, the 20-bit immediate is shifted left by 12 bits to form U immediates and by 1 bit 

to form J immediates. The location of instruction bits in the U and J format immediates is 
chosen to maximize overlap with the other formats and with each other.

19



Immediate Encoding Variants

20



RISC-V Addressing Modes

21



ALU Instructions: R-Type

§ R-type (Register)
• rs1 and rs2 are the source register, rd is the destination
• ADD/SUB
• SLT, SLTU: set less than
• SRL, SLL, SRA: shift logic or arithmetic left or right

22



ALU Instructions: I-Type

§ I-type (immediate), all immediates in all instructions are sign 
extended
• ADDI: adds sign extended 12-bit immediate to rs1
• SLTI(U): set less than immediate
• ANDI/ORI/XORI: logical operations
• SLLI/SRLI/SRAI: shifts by constants

23

I-type instructions end with I



ALU Instructions: U-Type

§ LUI/AUIPC: load upper immediate/add upper immediate to 
PC

24

§ Writes 20-bit immediate to top of destination register
§ Used to build large immediates
§ 12-bit immediates are signed, so have to account for sign 

when building 32-bit immediates in 2-instruction sequence 
(LUI high-20 bits, ADDI low-12 bits)



Load/Store Instructions: I/S-Type

§ Load instruction (I-type)
• rd = MEM (rs1 + imm)

§ Store instruction (S-type)
• MEM (rs1 + imm) = rs2

25



Control Transfer Instructions: J-Type

§ No architecturally visible delay slots
§ Unconditional jumps: PC + offset target
• JAL: jump and link, also writes PC + 4 to x1, J-type

§ Offset scaled by 1-bit left shift – can jump to 16-bit instruction boundary (same 
for branches)

• JLAR: jump and link register where imm (12bits) + rd1 = target

26



Control Transfer Instructions: B-Type

§ No architecturally visible delay slots
§ Conditional branches: B-type and PC + offset target

27

Branches, compare two registers, PC + (immediate << 1) target 
(signed offset in multiples of two). Branches do not have delay slot.



Where is NOP?

28



Privileged ISA: Modes

§ RISC-V privileged spec defines 3 levels of privilege, called modes
• Machine mode is the highest privileged mode and the only required mode

§ More-privileged modes generally have access to all of the features of less-
privileged modes, and they add additional functionality not available to less-
privileged modes, such as the ability to handle interrupts and perform I/O. 
Processors typically spend most of their execution time in their least-
privileged mode; interrupts and exceptions transfer control to more-privileged 
modes.

29



Software Stack and Instructions

§ Implementations might provide anywhere from 1 to 4 privilege modes trading 
off reduced isolation for lower implementation cost

§ RISC-V privileged software stack

§ RV32/64 privileged instructions

30



RISC-V Reference Card

31



Specifications and Software

§ Specification from RISC-V website
• https://riscv.org/specifications/

§ RISC-V software includes
• Toolchain projects

§ https://wiki.riscv.org/display/HOME/Toolchain+Projects

• A simulator (“spike”)
§ https://github.com/riscv-software-src/riscv-isa-sim

• Standard simulator QEMU (Upstream now)
§ https://github.com/riscv/riscv-qemu

§ Operating systems support exists for Linux (Upstream now)
• https://github.com/riscv/riscv-linux

§ A javascript ISA simulator to run a RISC-V Linux system on a web 
browser
• https://github.com/riscv/riscv-angel

32


