
System I

Bo Feng, Lei Wu, Rui Chang

Zhejiang University

RISC-V Assembly

§ Many images and resources used in this lecture are collected from the Internet, and
they are used only for the educational purpose. The copyright belong to the original
owners, respectively.

§ Part of slides credit to
• CS 61C, Lisa Yan, Justin Yokota @ UC Berkeley

Disclaimer

2

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow
• Function Call
• From source code to a running program

3

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow
• Function Call
• From source code to a running program

4

Converting C code to RISC-V

There are only 32 general-purpose registers. What if we have more than 32
variables? Let's translate a program under the following restrictions:

● Only registers x5, x6, and x7 may be modified, and only for intermediate
calculations
○ We'll name them "t0", "t1", and "t2", for "temporary register 0-2"

● x2 points to the start of a block of memory that we can use however we
want
○ We'll name x2 "sp", for "stack pointer"

5

Converting C code to RISC-V

int a = 5;
char b[] = "string"; // Array will get stored on stack
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

6

Converting C code to RISC-V

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

Step 1: Assign each
variable to some offset
from sp.

● Exact values don't
matter as long as
we're consistent

a: 0(sp)

b: 4(sp)

c: 12(sp)

d: 52(sp)

7

Converting C code to RISC-V

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

a: 0(sp)

b: 4(sp)

c: 12(sp)

d: 52(sp)

li t0 5

sw t0 0(sp)

8

Converting C code to RISC-V

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

a: 0(sp)

b: 4(sp)

c: 12(sp)

d: 52(sp)

li t0 0x73
sb t0 4(sp)
li t0 0x74
sb t0 5(sp)
li t0 0x72
sb t0 6(sp)
li t0 0x69
sb t0 7(sp)
li t0 0x6E
sb t0 8(sp)
li t0 0x67
sb t0 9(sp)
sb x0 10(sp)

9

Converting C code to RISC-V (Better Approach)

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

a: 0(sp)

b: 4(sp)

c: 12(sp)

d: 52(sp)

li t0 0x69727473

sw t0 4(sp)

li t0 0x0000676E

sw t0 8(sp)

10

Converting C code to RISC-V

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

a: 0(sp)

b: 4(sp)

c: 12(sp)

d: 52(sp)

Nothing

11

Converting C code to RISC-V

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

a: 0(sp)

b: 4(sp)

c: 12(sp)

d: 52(sp)

lb t0 7(sp)

sb t0 52(sp)

12

Converting C code to RISC-V

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

a: 0(sp)

b: 4(sp)

c: 12(sp)

d: 52(sp)

lw t0 0(sp)

lbu t1 52(sp)

add t2 t0 t1

sw t2 28(sp)

13

Converting C code to RISC-V

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

a: 0(sp)

b: 4(sp)

c: 12(sp)

d: 52(sp)

li t0 20

lw t1 0(sp)

sw t0 t1*4+12(sp)

slli t1 t1 2 #t1*=4

addi t1 t1 12

add t1 t1 sp

sw t0 0(t1)

14

Converting C code to RISC-V

int a = 5;
char b[] = "string";
int c[10];
uint8_t d = b[3];
c[4] = a+d;
c[a] = 20;

li t0 5
sw t0 0(sp)
li t0 0x69727473
sw t0 4(sp)
li t0 0x0000676E
sw t0 8(sp)
lb t0 7(sp)
sb t0 52(sp)
lw t0 0(sp)
lbu t1 52(sp)
add t2 t0 t1
sw t2 28(sp)
li t0 20
lw t1 0(sp)
slli t1 t1 2 #t1*=4
addi t1 t1 12
add t1 t1 sp
sw t0 0(t1)

15

Why we need so many registers

● As the previous example showed, it's possible to write RISC-V with only
a sp and three temporary registers

● Why do we have 32 registers?

16

RISC-V Guiding Philosophy

Extremely fast
Extremely expensive

Tiny capacity

Fast
Priced reasonably
Medium capacity

17

Speed of Registers vs Memory

● Given that
○ Registers: 32 words (128 Bytes)
○ Memory (DRAM): Billions of bytes

(2 GB to 96 GB on laptop)
● and physics dictates…

○ Smaller is faster
● How much faster are registers than DRAM??

○ About 50-500 times faster!
(in terms of latency of one access - tens of ns)

■ But subsequent words come every few ns
18

Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?

Jim Gray
Turing Award
B.S. Cal 1966

Ph.D. Cal
1969

Registers

Memory

1

100

My Head

1.5 hr

1 min

Sacramento

19

And in Conclusion…

● Memory is byte-addressable, but lw and sw access one word at
a time.

● A pointer (used by lw and sw) is just a memory address, we
can add to it or subtract from it (using offset).

● Memory can be used for variables we can't store in registers, but
100x slower than using registers directly
○ Use loads and stores as infrequently as possible!

● New Instructions:
lw, sw, lb, sb, lbu

20

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow

§ C Control Flow and goto
§ Reducing C with goto
§ RISC-V Control Flow

• Function Call
• From source code to a running program

21

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow

§ C Control Flow and goto
§ Reducing C with goto
§ RISC-V Control Flow

• Function Call
• From source code to a running program

22

RISC-V Guiding Philosophy

● Goal of assembly: Create a set of instructions such that:
○ Each instruction represents a single computation or "step"

■ Ex. add adds two registers together, addi adds a register and an immediate
○ Every C program can be broken down into instructions

■ Ex. a = b+c+d; -> a = b+c; -> add x5 x6 x7
 a = a+d; add x5 x5 x8

○ Each instruction works in isolation without depending on context
■ A program's behavior should depend only on memory, registers, and the current

line being run
○ RISC: There should be as few unique instructions as possible

23

Control Flow in C

● In C, we run code one line at
a time.

● Most of the time, when we
run a line of code, the next
line that we will run is the
line immediately afterwards

● A few lines make it so that
the next line isn't the line
immediately afterwards, but
somewhere else (we "jump"
to another line of code).

int x = 5;
int y = 10;
int z = x+y;

Current Line

Next Line

24

Control Flow in C

Lines in C that affect program
flow:

● If statements

if(cond) {
 line;
}

line;

Current Line

Next Line if cond

Next Line if !cond

25

Control Flow in C

Lines in C that affect program
flow:

● If statements
○ If-else statements

if(cond) {
 line;
}
else {
 line;
}
line;

Current Line

Next Line if cond

Next Line if !cond

26

Control Flow in C

Lines in C that affect program
flow:

● If statements
● While Loops

while(cond) {
 line;
 line;
}

Current Line

Next Line

27

Control Flow in C

Lines in C that affect program
flow:

● If statements
● While Loops

○ Do-While Loops

do {
 line;
 line;
} while(cond);
line;

Current Line

Next Line if cond

Next Line if !cond

28

Control Flow in C

Lines in C that affect program
flow:

● If statements
● While Loops
● For Loops

for(line;cond;line) {
 line;
 line;
}
line;

Current Line (cond)

Next Line if !cond

Next Line if cond

29

Control Flow in C

Lines in C that affect program
flow:

● If statements
● While Loops
● For Loops
● Break/Continue

while(true) {
 line;
 break;
}
line;

Current Line

Next Line

30

Control Flow in C

Lines in C that affect program
flow:

● If statements
● While Loops
● For Loops
● Break/Continue
● Function Calls

int foo(n) {
 int a = 5;
 return a+n;
}
...
line;
foo(5);
line;

Current Line

Next Line

31

Control Flow in C

Lines in C that affect program
flow:

● If statements
● While Loops
● For Loops
● Break/Continue
● Function Calls

○ Both the function call,
and the return!

○ Return line depends on
which line called foo.

○ Elaborated in the next
subsection

int foo(n) {
 int a = 5;
 return a+n;
}
...
line;
foo(5);
line;
foo(5);
line;

Current Line

Next Line?

Next Line?

32

New C operator: goto and Labels

A label is an identifier to a particular line of
code

● Doesn't count as a line of code itself;
merely "points out" a particular line

● Each label must have a unique name (like
variable names)

The goto statement changes the next line to
be run to the labelled line

● The label can be either before or after the
goto statement.

Target: line;
 line;
 line;
 goto Target;
 line;

Current Line

Next Line

33

goto Example: Handling Mallocs

int* a = malloc(sizeof(int)*1000);

int* b = malloc(sizeof(int)*1000000);

int* c = malloc(sizeof(int)*1000000000);

FILE* d = fopen(filename);

34

goto Example: Handling Mallocs

int* a = malloc(sizeof(int)*1000);

int* b = malloc(sizeof(int)*1000000);

int* c = malloc(sizeof(int)*1000000000);

FILE* d = fopen(filename);

Bad code: malloc can
fail (returning NULL),
and we should catch
that before it causes a
segfault

35

goto Example: Handling Mallocs

int* a = malloc(sizeof(int)*1000);

if(a == NULL) allocation_failed();

int* b = malloc(sizeof(int)*1000000);
if(b == NULL) allocation_failed();

int* c = malloc(sizeof(int)*1000000000);

if(c == NULL) allocation_failed();
FILE* d = fopen(filename);

if(d == NULL) allocation_failed();

36

goto Example: Handling Mallocs

int* a = malloc(sizeof(int)*1000);

if(a == NULL) allocation_failed();

int* b = malloc(sizeof(int)*1000000);
if(b == NULL) allocation_failed();

int* c = malloc(sizeof(int)*1000000000);

if(c == NULL) allocation_failed();
FILE* d = fopen(filename);

if(d == NULL) allocation_failed();

Bad code: leaks memory
since a gets allocated but
never freed.

37

goto Example: Handling Mallocs

int* a = malloc(sizeof(int)*1000);
if(a == NULL) allocation_failed();
int* b = malloc(sizeof(int)*1000000);
if(b == NULL) {
 free(a);
 allocation_failed();
}
int* c = malloc(sizeof(int)*1000000000);
if(c == NULL) {
 free(b);
 free(a);
 allocation_failed();
}
FILE* d = fopen(filename);
if(d == NULL) {
 free(c);
 free(b);
 free(a);
 allocation_failed();
}

38

goto Example: Handling Mallocs

int* a = malloc(sizeof(int)*1000);
if(a == NULL) goto ErrorA;
int* b = malloc(sizeof(int)*1000000);
if(b == NULL) goto ErrorB;
int* c = malloc(sizeof(int)*1000000000);
if(c == NULL) goto ErrorC;
FILE* d = fopen(filename);
if(d == NULL) {
 free(c);
ErrorC: free(b);
ErrorB: free(a);
ErrorA: allocation_failed();
}

39

NEVER USE goto!!!!

● goto has a tendency to create completely illegible code
● Generally considered bad practice, except in very specific situations

○ Error handling
○ Jumping out of nested loops

● Even with the above, there are other approaches that don't use goto
● Nevertheless, goto is useful in that we can create any other control flow statements

with just goto and conditional goto statements

40

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow

§ C Control Flow and goto
§ Reducing C with goto
§ RISC-V Control Flow

• Function Call
• From source code to a running program

41

Reducing C with goto: Break

while(true) {
 line;
 break;
}
line;

42

Reducing C with goto: Break

while(true) {
 line;
 goto AfterWhile;
}
AfterWhile: line;

43

Reducing C with goto: If

if(cond) {
 line;
 line;
} else {
 line;
 line;
}
line;

44

Reducing C with goto: If

if(cond) goto IfCase;
 goto ElseCase;
IfCase:
 line;
 line;
 goto AfterIf;
ElseCase:
 line;
 line;
AfterIf: line;

45

Reducing C with goto: If without an Else

if(!cond) goto AfterIf;
line;
line;
AfterIf: line;

46

Reducing C with goto: Do-While

do {
 line;
 line;
} while(cond)
line;

47

Reducing C with goto: Do-While

Loop: line;
line;
if(cond) goto Loop;
line;

48

Reducing C with goto: While

while(cond) {
 line;
 line;
}
line;

49

Reducing C with goto: While

Loop: if(!cond) goto AfterLoop;
line;
line;
goto Loop;
AfterLoop: line;

50

Reducing C with goto: For

for(startline;cond;incline) {
 line;
 line;
}
line;

51

Reducing C with goto: For

startline;
while(cond) {
 line;
 line;
 incline;
}
line;

52

Reducing C with goto: For

startline;
Loop: if(!cond) goto AfterLoop
line;
line;
incline;
goto Loop
AfterLoop: line;

53

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow

§ C Control Flow and goto
§ Reducing C with goto
§ RISC-V Control Flow

• Function Call
• From source code to a running program

54

RISC-V Control Flow Operations

● Like in C, RISC-V allows you to write labels to signify particular lines of
code

● RISC-V has instructions for both conditional and unconditional jumps:
○ j Label

■ Jumps to the specified label
■ Technically a pseudoinstruction; more on this later

○ Branch instructions:
■ General format: bxx rs1 rs2 Label
■ Jumps to the specified Label if the condition is met
■ If the condition is not met, just moves to the next line

55

RISC-V Control Flow Operations

List of branch instructions:

● beq rs1 rs2 Label: Branch if EQual
● bne rs1 rs2 Label: Branch if Not Equal
● blt rs1 rs2 Label: Branch if Less Than (signed) (rs1 < rs2)
● bge rs1 rs2 Label: Branch if Greater or Equal (signed)
● bltu rs1 rs2 Label: Branch if Less Than (unsigned)
● bgeu rs1 rs2 Label: Branch if Greater or Equal (unsigned)
● Note that bgt, bgtu, ble, and bleu are pseudoinstructions (can make

them by reversing inputs of existing instructions)

56

RISC-V Control Flow Operations: Example

int a = 0;

for(int i = 0; i < 10; i++) {

 if(i == 7) {

 break;

 }

 a = a + i;

}

a = a + 50;

57

RISC-V Control Flow Operations: Example

int a = 0;

for(int i = 0; i < 10; i++) {

 if(i == 7) goto End;

 a = a + i;

}

End: a = a + 50;

58

RISC-V Control Flow Operations: Example

int a = 0;
int i = 0;
Loop: if(i >= 10) goto End;
 if(i == 7) goto End;
 a = a + i;
 i = i + 1;
 goto Loop;
End: a = a + 50;

59

RISC-V Control Flow Operations: Example

int a = 0;
int i = 0;
Loop:
 int j = 10;
 if(i >= j) goto End;
 j = 7;
 if(i == j) goto End;
 a = a + i;
 i = i + 1;
 goto Loop;
End: a = a + 50;

60

RISC-V Control Flow Operations: Example

li x10 0 #int a = 0;
 li x5 0 #int i = 0;
Loop:
 li x6 10 #int j = 10;
 bge x5 x6 End #if(i >= j) goto End;
 li x6 7 #j = 7;
 beq x5 x6 End #if(i == j) goto End;
 add x10 x10 x5 #a = a + i;
 addi x5 x5 1 #i = i + 1;
 j Loop #goto Loop;
End: addi x10 x10 50 #a = a + 50;

61

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow
• Function Call

§ C Functions
§ RISC-V Memory Model
§ RISC-V Functions
§ Calling Convention

• From source code to a running program
62

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow
• Function Call

§ C Functions
§ RISC-V Memory Model
§ RISC-V Functions
§ Calling Convention

• From source code to a running program
63

C Functions

int foo(int i) {
 if(i == 0) return 0;
 int a = i + foo(i-1);
 return a;
}
int j = foo(3);
int k = foo(100);
int m = j+k;

Two jumps for each function: Jump
to the function for the function call,
and jump back to the next line of
code after the function returns

64

C Functions

int foo(int i) {
 if(i == 0) return 0;
 int a = i + foo(i-1);
 return a;
}
int j = foo(3);
int k = foo(100);
int m = j+k;

Calling a function:
● Set function arguments
● Goto the start of the function

During a function call:
● Keep local scope separate from global scope
● Perform the desired task of the function

Returning from a function:
● Place the return value in a variable that can

be accessed
● Goto the line immediately after the function

call

65

Problem with Maintaining Scope

● In RISC-V, local scope doesn't exist; all registers are "kept" throughout
the program

● If a function changes register x10, then the global value of x10 will also
change

● Can we solve this by just making sure each function uses a different set
of registers?
○ No; recursive function calls won't be able to use different registers

● We'll need a way to store variables somewhere that no called function
can change

66

Problem with returning from a function

● In C, all gotos need to go to a specific label (that can't change)
● However, when returning from a function, we need to jump to different

places depending on who called the function (the return address).
● This can be solved if we treat the return address as an input to the

function
● C doesn't actually let you store a label in a variable/argument, so we

won't be able to reduce functions in C using just gotos
● We'll need a way to send in the return address to a function, and jump to

that return address when we finish with the function.

67

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow
• Function Call

§ C Functions
§ RISC-V Memory Model
§ RISC-V Functions
§ Calling Convention

• From source code to a running program
68

Review: C Memory Model

● In C, memory was divided into
four segments:
○ Code/Text
○ Static/Data
○ Heap
○ Stack

● RISC-V uses the same memory
layout. Today, we'll take a closer
look at the text and stack
segments text

data

heap

stack0xFFFF FFFF

0x0000 0000

69

Text

● RISC-V code is also a form of data.
This data gets stored in the text
section of memory.

● In RISC-V, every (real) instruction
is stored as a 32-bit number.
○ Thus, the "next" instruction is

always stored 4 bytes after the
current instruction.

● A special 33rd register called the
Program Counter (or PC) keeps
track of which line of code is
currently being run.

Address Data

0x0000 0000 addi x5 x0 5

0x0000 0004 xor x5 x6 x6

0x0000 0008 jal x1 Label

0x0000 000C sw x5 8(x2)

0x0000 0010 beq x0 x0 XX

0x0000 0014 bne x0 x0 XX

Register Value

PC 0x0000 0008

Current Line

70

RISC-V Jump Instructions

● The address of an instruction can be
used (along with the PC) to perform
the jumps we need for functions.

● jal rd Label: Jump And Link
○ Jumps to the given label, but

also sets rd to PC+4 (the line
after the current line)

○ Ex. If we run the current line,
x1 will be set to 0x0000
000C, and PC will move to
Label

Address Data

0x0000 0000 addi x5 x0 5

0x0000 0004 xor x5 x6 x6

0x0000 0008 jal x1 Label

0x0000 000C sw x5 8(x2)

0x0000 0010 beq x0 x0 XX

0x0000 0014 bne x0 x0 XX

Register Value

PC 0x0000 0008

Current Line

71

RISC-V Jump Instructions

● jal rd Label: Jump And Link
○ Jumps to the given label, but also sets rd to PC+4 (the return address)
○ Often used for function calls

● j Label: Jump
○ (From last lecture) Jumps to the given label.

Pseudoinstruction for jal x0 Label
○ Used for unconditional jumps (ex. loops)

72

RISC-V Jump Instructions

● jalr rd rs1 imm: Jump and Link Register
○ Jumps to the instruction at address rs1+imm, and sets rd to PC+4
○ Less common than other jumps, but used for higher-order functions

and some function calls (more in the future)
● jr rs1: Jump to Register

○ Jumps to the instruction at address rs1
○ Also a pseudoinstruction for jalr x0 rs1 0
○ Often used to return from a function

73

Stack

● In C: Each function call
automatically creates a stack
frame, with nested calls growing
the stack downward.

● In RISC-V: One of our registers
(by convention x2, nicknamed sp,
or "stack pointer") is set to the
bottom of the stack. A function
can choose to create a stack
frame, by manipulating sp.

fooB frame

fooC frame

fooA frame

x2 = sp

fooA() { fooB(); }
fooB() { fooC(); }
fooC() { … }

74

RISC-V: Rules for Manipulating the Stack

● Anything above the sp at the start of a
function belongs to another function. You
may not modify anything above the sp
without permission.

● Everything below the sp is safe to modify.
○ But anyone else can modify it, so you

can't leave data there and expect it to
stay the same

● By decrementing the sp, we can allocate as
much space as we need for our function,
that we can use however we want.

● After finishing a function call, the sp must
be set to its value from before the
function call

Address Data

0xFFFF FF0C

0xFFFF FF08

0xFFFF FF04

0xFFFF FF00

0xFFFF FEFC

0xFFFF FEF8

Register Value

sp 0xFFFF FF04

75

Manual Stack Manipulation: Example

fooB:
addi sp sp -8
...
jal x1 fooC
...
addi sp sp 8
jr ra

Address Data

0xFFFF FF0C 0x12345678

0xFFFF FF08 0x9ABCDEF0

0xFFFF FF04 0x00000000

0xFFFF FF00 0xABADCAFE

0xFFFF FEFC 0x4F639DAB

0xFFFF FEF8 0x14857642

Register Value

sp 0xFFFF FF04

Current Line

Space that we aren't
allowed to change

By convention, stack
addresses written
from greatest to
smallest

76

Manual Stack Manipulation: Example

fooB:
addi sp sp -8
...
jal x1 fooC
...
addi sp sp 8
jr ra

Address Data

0xFFFF FF0C 0x12345678

0xFFFF FF08 0x9ABCDEF0

0xFFFF FF04 0x00000000

0xFFFF FF00 0xABADCAFE

0xFFFF FEFC 0x4F639DAB

0xFFFF FEF8 0x14857642

Register Value

sp 0xFFFF FEFC

Current Line

Space that we can
change however we
want

77

Manual Stack Manipulation: Example

fooB:
addi sp sp -8
...
jal x1 fooC
...
addi sp sp 8
jr ra

Address Data

0xFFFF FF0C 0x12345678

0xFFFF FF08 0x9ABCDEF0

0xFFFF FF04 0x00000000

0xFFFF FF00 0xDEADBEEF

0xFFFF FEFC 0xC561CCCC

0xFFFF FEF8 0x14857642

Register Value

sp 0xFFFF FEFC

Current Line

Space that fooC isn't
allowed to change
(guaranteed to stay
the same)

78

Manual Stack Manipulation: Example

fooB:
addi sp sp -8
...
jal x1 fooC
...
addi sp sp 8
jr ra

Address Data

0xFFFF FF0C 0x12345678

0xFFFF FF08 0x9ABCDEF0

0xFFFF FF04 0x00000000

0xFFFF FF00 0xDEADBEEF

0xFFFF FEFC 0xC561CCCC

0xFFFF FEF8 0xF00CF00C

Register Value

sp 0xFFFF FEFC

Current Line

After fooC, sp
shouldn't be different

79

Manual Stack Manipulation: Example

fooB:
addi sp sp -8
...
jal x1 fooC
...
addi sp sp 8
jr ra

Address Data

0xFFFF FF0C 0x12345678

0xFFFF FF08 0x9ABCDEF0

0xFFFF FF04 0x00000000

0xFFFF FF00 0xDEADBEEF

0xFFFF FEFC 0xC561CCCC

0xFFFF FEF8 0xF00CF00C

Register Value

sp 0xFFFF FEFC

Current Line

sp needs to be
restored to its
original value

80

Manual Stack Manipulation: Example

fooB:
addi sp sp -8
...
jal x1 fooC
...
addi sp sp 8
jr ra

Address Data

0xFFFF FF0C 0x12345678

0xFFFF FF08 0x9ABCDEF0

0xFFFF FF04 0x00000000

0xFFFF FF00 0xDEADBEEF

0xFFFF FEFC 0xC561CCCC

0xFFFF FEF8 0xF00CF00C

Register Value

sp 0xFFFF FF04

Current Line

Data will eventually
be overwritten by
another stack frame

81

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow
• Function Call

§ C Functions
§ RISC-V Memory Model
§ RISC-V Functions
§ Calling Convention

• From source code to a running program

82

Converting a C function into RISC-V

int foo(int i) {
 if(i == 0) return 0;
 int a = i + foo(i-1);
 return a;
}
int j = foo(3);
int k = foo(100);
int m = j+k;

Step 1: Define how foo plans to
use registers
Inputs:

● i: x10
○ We'll call this register

"a0" for "argument"
● Return Address: x1

○ We'll call this register
"ra"

Output: x10
● Yes, we'll reuse a0 for the

return value
83

Converting a C function into RISC-V

int foo(int i) {
 if(i == 0) return 0;
 int a = i + foo(i-1);
 return a;
}
int j = foo(3);
int k = foo(100);
int m = j+k;

Step 1: Define how foo plans to
use registers
Stack Pointer: x2

● Nicknamed "sp"
Register that will NOT be
changed by foo: x8, x9

● We can still use these
registers, as long as they get
restored by the end of the
function

● We'll call these registers
"s0" and "s1" for "saved"

84

Converting a C function into RISC-V

int foo(int i) {
 if(i == 0) return 0;
 int a = i + foo(i-1);
 return a;
}
int j = foo(3);
int k = foo(100);
int m = j+k;

Step 1: Define how foo plans to
use registers
Registers that may be changed
by our function call:
x5

● Since foo can change this,
anything that calls foo
shouldn't save important
data in this register

● We'll call this register "t0"
for "temporary"

85

Converting a C function into RISC-V

int foo(int i) {
 if(i == 0) return 0;
 int a = i + foo(i-1);
 return a;
}
int j = foo(3);
int k = foo(100);
int m = j+k;

Step 1: Define how foo plans to
use registers

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

86

Converting a C function into RISC-V

int foo(int i) {
 ...
}
int j = foo(3);
int k = foo(100);
int m = j+k;

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

87

Converting a C function into RISC-V

int foo(int i) {
...
}
li a0 3 # int j = foo(3);
jal ra foo # call foo
mv s0 a0 # mv rd rs1 sets rd = rs1
int k = foo(100);
int m = j+k;

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

88

Converting a C function into RISC-V

int foo(int i) {
...
}
li a0 3 # int j = foo(3);
jal ra foo # call foo
mv s0 a0 # mv rd rs1 sets rd = rs1
li a0 100 # int k = foo(100);
jal ra foo # call foo
mv s1 a0 # Saves return value in s1
int m = j+k;

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

89

Converting a C function into RISC-V

int foo(int i) {
...
}
li a0 3 # int j = foo(3);
jal ra foo # call foo
mv s0 a0 # mv rd rs1 sets rd = rs1
li a0 100 # int k = foo(100);
jal ra foo # call foo
mv s1 a0 # Saves return value in s1
add a0 s0 s1 # int m = j+k;

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

90

Converting a C function into RISC-V

int foo(int i) {
 if(i == 0) return 0;
 int a = i + foo(i-1);
 return a;
}
...

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

91

Converting a C function into RISC-V

int foo(int i) {
 if(i == 0) return 0;
 int j = i - 1;
 j = foo(j);
 int a = i + j;
 return a;
}
...

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

92

Converting a C function into RISC-V

int foo(int i) {
 if(i == 0) return 0;
 int j = i - 1;
 j = foo(j);
 int a = i + j;
 return a;
}
...

Function call
will change ra,
a0. Need to
save both
somewhere

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

93

Converting a C function into RISC-V

foo: # int foo(int i)
addi sp sp -4 #Prologue
sw ra 0(sp) #Prologue
if(i == 0) return 0;
int j = i - 1;
j = foo(j);
int a = i + j;
Epilogue:
lw ra 0(sp) #Epilogue
addi sp sp 4 #Epilogue
return a;
...

Option 1: Save
ra on the stack
at the start of
the function

Then restore ra
from the stack
(and restore
the stack) at
the end.

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

94

Converting a C function into RISC-V

foo: # int foo(int i)
addi sp sp -4 #Prologue
sw ra 0(sp) #Prologue
mv s0 a0 #Move i
if(i == 0) return 0;
int j = i - 1;
j = foo(j);
int a = i + j;
Epilogue:
lw ra 0(sp) #Epilogue
addi sp sp 4 #Epilogue
return a;
...

Option 2: Save
a0 in a saved
register so it
won't get
changed by
foo's call

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

95

Converting a C function into RISC-V

foo: # int foo(int i)
addi sp sp -8 #Prologue
sw ra 0(sp) #Prologue
sw s0 4(sp) #Prologue
mv s0 a0 #Move i
if(i == 0) return 0;
int j = i - 1;
j = foo(j);
int a = i + j;
Epilogue:
lw ra 0(sp) #Epilogue
lw s0 4(sp) #Epilogue
addi sp sp 8 #Epilogue
return a;
...

If we modify
s0, we need to
restore it. Save
its old value
on the stack,
and restore it
later.

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

96

Converting a C function into RISC-V

foo: # int foo(int i)
addi sp sp -8 #Prologue
sw ra 0(sp) #Prologue
sw s0 4(sp) #Prologue
mv s0 a0 #Move i
if(i == 0) return 0;
addi t0 s0 -1 #int j = i - 1;
mv a0 t0
jal ra foo #j = foo(j);
mv t0 a0
add a0 s0 t0 #int a = i + j;
Epilogue:
lw ra 0(sp) #Epilogue
lw s0 4(sp) #Epilogue
addi sp sp 8 #Epilogue
jr ra #return a;
...

Use t0 for j,
and a0 for a.
Due to how foo
works, we need
to move data
to/from a0 for
function
input/output.

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

97

Converting a C function into RISC-V

foo: # int foo(int i)
addi sp sp -8 #Prologue
sw ra 0(sp) #Prologue
sw s0 4(sp) #Prologue
mv s0 a0 #Move i
if(i == 0) return 0;
addi a0 s0 -1 #int j = i - 1;
jal ra foo #j = foo(j);
add a0 s0 a0 #int a = i + j;
Epilogue:
lw ra 0(sp) #Epilogue
lw s0 4(sp) #Epilogue
addi sp sp 8 #Epilogue
jr ra #return a;
...

Alternative:
Use a0 for j,
and for a.
Saves moving
from t0 to a0
and back in this
particular code.

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary

98

What code should go here?

foo: # int foo(int i)
addi sp sp -8 #Prologue
sw ra 0(sp) #Prologue
sw s0 4(sp) #Prologue
mv s0 a0 #Move i
<CODE> #if(i == 0) return 0;
Next:
addi a0 s0 -1 #int j = i - 1;
jal ra foo #j = foo(j);
add a0 s0 a0 #int a = i + j;
Epilogue:
lw ra 0(sp) #Epilogue
lw s0 4(sp) #Epilogue
addi sp sp 8 #Epilogue
jr ra #return a;
...

Option A:
beq s0 x0 Next
li a0 0
j Epilogue

Option B:
beq s0 x0 Next
li a0 0
jr ra

Option C:
bne s0 x0 Next
li a0 0
j Epilogue

Option D:
bne s0 x0 Next
li a0 0
jr ra

99

100

What code should go here?

foo: # int foo(int i)
addi sp sp -8 # Prologue
sw ra 0(sp) # Prologue
sw s0 4(sp) # Prologue
mv s0 a0 # Move i
bne s0 x0 Next# if i != 0, skip this
li a0 0 # int a = 0;
j Epilogue # Go to Epilogue (to restore stack)
Next:
addi a0 s0 -1 # int j = i - 1;
jal ra foo # j = foo(j);
add a0 s0 a0 # int a = i + j;
Epilogue:
lw ra 0(sp) # Epilogue
lw s0 4(sp) # Epilogue
addi sp sp 8 # Epilogue
jr ra # return a;
...

Option A:
beq s0 x0 Next
li a0 0
j Epilogue

Option B:
beq s0 x0 Next
li a0 0
jr ra

Option C:
bne s0 x0 Next
li a0 0
j Epilogue

Option D:
bne s0 x0 Next
li a0 0
jr ra

101

What code should go here?

j main
foo: # int foo(int i)
addi sp sp -8 # Prologue
sw ra 0(sp) # Prologue
sw s0 4(sp) # Prologue
mv s0 a0 # Move i
bne s0 x0 Next# if i != 0, skip this
li a0 0 # int a = 0;
j Epilogue # Go to Epilogue (to restore stack)
Next:
addi a0 s0 -1 # int j = i - 1;
jal ra foo # j = foo(j);
add a0 s0 a0 # int a = i + j;
Epilogue:
lw ra 0(sp) # Epilogue
lw s0 4(sp) # Epilogue
addi sp sp 8 # Epilogue
jr ra # return a;
main:
li a0 3 # int j = foo(3);
jal ra foo # call foo
mv s0 a0 # mv rd rs1 sets rd = rs1
li a0 100 # int k = foo(100);
jal ra foo # call foo
mv s1 a0 # Saves return value in s1
add a0 s0 s1 # int m = j+k; 102

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Variable Definition & Arithmetic Operations
• Control Flow
• Function Call

§ C Functions
§ RISC-V Memory Model
§ RISC-V Functions
§ Calling Convention

• From source code to a running program

103

Calling Convention

● When we wrote foo, we chose "roles"
for each register based on how we
wanted to use them
○ In order for someone else to use

foo, they would have to know
everything in the table on the right

● We could choose to make one of these
tables for every function we need to
make

● Better solution: Standardize a set of
conventions that everyone agrees to
follow.

Register Role in foo

x10 = a0 i, return value

x1 = ra return address

x2 = sp stack pointer

x8 = s0 Saved Register

x9 = s1 Saved Register

x5 = t0 Temporary
104

Calling Convention

Each register is given a name according to what its
role is (no need to memorize the exact mapping):

● zero: The x0 register, which always stores 0
● ra: x1, which is used to store return addresses

○ Two new pseudoinstructions that explicitly
use this:
■ jal Label -> jal ra Label
■ ret -> jr ra

105

Calling Convention

Callee Saved registers: Registers that must be restored
by the end of a function call (i.e. if you want to use it,
the called function needs to save the old value)

● sp: The x2 register, which is the stack pointer
● s0-s11: Saved registers

106

Calling Convention

Caller Saved registers: Registers that do not need to be
restored by a called function (i.e. if you want to save a
variable in this register, it needs to be saved
somewhere before you call another function)

● ra
● a0-a7: Registers used for function arguments

○ a0, a1 also used for function outputs
○ If a function needs more than 8 arguments,

can use the stack to store more arguments
● t0-t6: Temporary Registers

107

Calling Convention

Other registers: Registers that are out of scope for this
class (don't use them!)

● gp: The x3 register, used to store a reference to
the heap. Also called the "global pointer"

● tp: The x4 register, used to store separate stacks
for threads (multithreading will be covered in
mid-March)

108

Stack Frame (revisited)

109

How To Smash the Stack?

110

RISC-V Summary

● Over the past four lectures, we've covered almost everything about
programming in RISC-V.

● Arithmetic operations allow you to do math with registers
○ Immediate versions for register-constant operations

● Loads/Stores for accessing memory
● Branches for conditionally changing the current line of code
● Jumps for function calls and unconditional jumps
● Only a few remaining instructions left!

111

