
System I

Bo Feng, Lei Wu, Rui Chang

Zhejiang University

RISC-V Assembly

§ Many images and resources used in this lecture are
collected from the Internet, and they are used only for
the educational purpose. The copyright belong to the
original owners, respectively.

§ Part of slides credit to
• David A. Patterson and John L. Hennessy. Computer Organization and Design

RISC-V Edition: The Hardware Software Interface, 1st Edition.
• John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach, 6th Edition.
• Andrew Waterman and David A. Patterson. The RISC-V Reader: An Open

Architecture Atlas.
• CSCE 513, Prof. Yonghong Yan @ University of North Carolina at Charlotte
• CENG3420, Bei Yu @ The Chinese University of Hong Kong
• CS 3410, Prof. Hakim Weatherspoon @ Cornell University
• CS 162, Prof. Sam Kumar @ UC Berkeley
• CSc 453, Prof. Saumya Debray @ University of Arizona

Disclaimer

2

Overview

§ RISC-V ISA
§ RISC-V Assembly Language
• Some basic concepts
• From source code to a running program

16

From Source Code to A Running Program

17

§ Write source code
§ Turn the source code into the executable

program
§ Run it!

From C Source Code to A Running
Program
§ Steps of translation from C source code to a running program. These are

the logical steps, although some steps are combined to accelerate
translation.

18

Compiler: *.c -> *.s

§ Steps of translation from C source code to a running program. These are
the logical steps, although some steps are combined to accelerate
translation.

19

Compiler

§ Preprocessor (*.c -> *.i)
• Expands all macro definitions and include statements (and anything

else starting with a #) and passes the result to the actual compiler.

§ Compiler (*.i -> *.s)

20
https://people.cs.pitt.edu/~xianeizhang/notes/Linking.html

Evolution of Programming Languages

21

Bootstraping: Self-Compiling Compilers

22

§ A compiler (or assembler) written
in the source programming
language that it intends to compile.

§ An initial core version of the
compiler (the bootstrap compiler)
is generated in a different language
(which could be assembly
language); successive expanded
versions of the compiler are
developed using this minimal
subset of the language.

§ The problem of compiling a self-
compiling compiler has been
called the chicken-or-egg problem
in compiler design, and
bootstrapping is a solution to this
problem

Reflections on Trusting Trust

23

NOT Be Detailed in This Class…

24

Because You Deserve
More!

Assembler: *.s -> *.o

§ Steps of translation from C source code to a running program. These are
the logical steps, although some steps are combined to accelerate
translation.

25

Assembler

§ Not simply to produce object code from the instructions that the
processor understands, but to extend them to include operations useful for
the assembly language programmer or the compiler writer. This category,
based on clever configurations of regular instructions, is called pseudo-
instructions.

26

Assembler

27

“Hello World” in C

28

Input: in Assembly Language (*.s)

29

Assembler Directives

30

Output: in RISC-V Machine Language (*.o)

31

§ The assembler produces the object using the Executable and Linkable
Format (ELF, formerly named Extensible Linking Format) standard
format.

Executable and Linkable Format (ELF)

32

§ ELF is a common standard file
format for executable files, object
code, shared libraries, and core
dumps.

§ The standard binary file format for
Unix and Unix-like systems on x86
processors by the 86open project.

§ By design, the ELF format is
flexible, extensible, and cross-
platform. This has allowed it to be
adopted by many different
operating systems on many
different hardware platforms.

An ELF file has two views: the
program header shows
the segments used at run time,
whereas the section header lists
the set of sections.

ELF Object Files

33

§ Created by the assembler and the linker, object files are
binary representations of programs intended to be executed
directly on a processor.
• Programs that require other abstract machines, such as shell scripts,

are excluded.
§ There are three main types of object files:
• A relocatable file holds code and data suitable for linking with other

object files to create an executable or a shared object file.
• An executable file holds a program suitable for execution; the file

specifies how exec creates a program's process image.
• A shared object file holds code and data suitable for linking in two

contexts. First, the linker processes the shared object file with other
relocatable and shared object files to create another object file.
Second, the dynamic linker combines it with an executable file and
other shared objects to create a process image.

Relocatable vs. Executable

34

Executable File

Section-Header Table
(optional)

ELF Header

Segment 1 Data
Segment 2 Data
Segment 3 Data

…
Segment n Data

Program-Header Table

Section 2 Data
Section 3 Data

…
Section n Data

Relocatable File

Section-Header Table

Program-Header Table
(optional)

ELF Header

Section 1 Data

Relocatable Object File

§ As assembler’s output
• Binary machine code, but NOT executable

§ E.g., .o for Linux, while .obj for Windows

• May refer to external symbols
§ Need a symbol table

• Each object file has its own address space
§ Addresses will need to be fixed later

35

Symbols and References

§ Global labels: Externally visible “exported”
symbols
• Can be referenced from other object files
• Exported functions, global variables

§ Local labels: Internal visible only symbols
• Only used within this object file
• Static functions, static variables, loop labels, …

36

Issues Need to be Resolved

§ How does the Assembler resolve local references?
§ How does the Assembler resolve external

references?

37

How to Resolve Local References?

§ Handle forward references
• Two-pass assembly

§ Do a pass through the whole program, allocate instructions and
lay out data, thus determining addresses

§ Do a second pass, emitting instructions and data, with the correct
label offsets now determined

• One-pass (or backpatch) assembly
§ Do a pass through the whole program, emitting instructions, emit

a 0 for jumps to labels not yet determined, keep track of where
these instructions are

§ Backpatch, fill in 0 offsets as labels are defined

38

Format of Relocatable Object File

§ Header
• Size and position of pieces of file

§ Text Section
• Instructions

§ Data Section
• Static data (local/global vars, strings, constants)

§ Debugging Information
• Line number -> code address map, etc.

§ Symbol Table
• External (exported) references
• Unresolved (imported) references

39

Commonly Used Sections

40

§ Text (.section .text)
• Contain code (instructions)

§ Read-Only Data (.section .rodata)
• Contains pre-initialized constants

§ Read-Write Data (.section .data)
• Contains pre-initialized variables

§ BSS (.section .bss)
• Contains un-initialized data
• http://www.faqs.org/faqs/unix-faq/faq/part1/section-3.html

§ Useful Tools: Objdump & Readelf

http://www.faqs.org/faqs/unix-faq/faq/part1/section-3.html

Linker: (multiple) *.o -> a.out

§ Steps of translation from C source code to a running program. These are
the logical steps, although some steps are combined to accelerate
translation.

41

Linker

§ Rather than compile all the source code every time
one file changes, the linker allows individual files to
be compiled and assembled separately.

§ Why separate compile/assemble and linking steps?
• Separately compiling modules and linking them together

obviates the need to recompile the whole program every
time something changes
§ Need to just recompile a small module
§ A linker coalesces object files together to create a complete

program

§ The linker “stitches” the new object code together
with existing machine language modules, such as
libraries.

42

Role of Linker

43

ELF Header

Section-Header Table

Section 1 Data
Section 2 Data

…
Section n Data

ELF Header

Section-Header Table

Section 1 Data
Section 2 Data

…
Section n Data

ELF Header

Program-Header Table

Segment 1 Data

Segment 2 Data

…
Segment n Data

Relocatable File

Relocatable File

Executable File

Issues Need to be Resolved

§ How does the linker combine separately compiled
files?

§ How does linker resolve unresolved references?
§ How does linker relocate data and code segments

§ To combine object files into an executable file
• Relocate each object’s text and data segments
• Resolve as-yet-unresolved symbols
• Record top-level entry point in executable file

44

Linker Functions 1: Fixing Addresses

§ Addresses in an object file
are usually relative to the
start of the code or data
segment in that file.

§ When different object files
are combined:
• The same kind of segments (text,

data, read-only data, etc.) from
the different object files get
merged.

• Addresses have to be “fixed up”
to account for this merging.

• The fixing up is done by the
linker, using information
embedded in the executable for
this purpose (“relocations”).

45

Linker Function 2: Symbol Resolution

§ Suppose:
• Module B defines a symbol x;
• Module A refers to x.

§ The linker must:
• Determine the location of x in the object

module obtained from merging A and B;
and

• Modify references to x (in both A and B)
to refer to this location.

46

§ Each linkable module contains a symbol table, whose contents include:
• Global symbols defined (maybe referenced) in the module.
• Global symbols referenced but not defined in the module (these are generally

called externals).
• Segment names (e.g., text, data, rodata).
• These are usually considered to be global symbols defined to be at the

beginning of the segment.
• Non-global symbols and line number information (optional), for debuggers.

Format of Executable Object File

47

§ Header
• Location of main entry point

§ Text Segment
• Instructions

§ Data Segment
• Static data (local/global vars, strings, constants)

§ Relocation Information
• Instructions and data that depend on actual addresses
• Linker patches these bits after relocating segments

§ Symbol Table
• Exported and imported references

§ Debugging Information

Various Executable Object Files

48

§ Unix/Linux
• a.out
• COFF: Common Object File Format
• ELF: Executable and Linking Format
• …

§ Windows
• PE: Portable Executable

§ All support both executable and other object files

Output: a.out

49

§ In addition to the instructions, each object file contains a symbol table
that includes all the labels in the program that must be given addresses as
part of the linking process. This list includes labels to data as well as to
code.

Actual Entry Point: _start and crt0

50

§ For most C and C++ programs, the true entry point is not main, it’s
the _start function, which initializes the program runtime and invokes
the program’s main function.

§ Conventionally, it is implemented as crt0 (also known as c0), a set of
execution startup routines linked into a C program that performs any
initialization work required before calling the program's main function.

§ crt0 generally takes the form of an object file called crt0.o, often written
in assembly language (crt0.s), which is automatically included by the
linker into every executable file it builds. "crt" stands for "C runtime",
and the zero stands for "the very beginning".

An Example of crt0.s

51

Quiz

52

Where does the assembler place the following
symbols in the object file that it creates?
A. Text Section
B. Data Section
C. Exported reference in symbol table
D. Imported reference in symbol table
E. None of the above

#include <stdio.h>
#include <stdlib.h>

#define ITEM_NUM 16
static int ITEM_SIZE = 4;

int main() {
 size_t buf_size = ITEM_NUM * ITEM_SIZE * sizeof(char);
 char* heap_buf = (char *) malloc(buf_size);
 if (heap_buf) {
 printf(“Succeed to allocate: %d!\n”, buf_size);
 }
 free(heap_buf);
 return 0;
}

Q1: ITEM_NUM
Q2: ITEM_SIZE
Q3: malloc

Static vs. Dynamic Linking

53

§ Static linking
• All potential library code is linked and then loaded together before

execution.
• Such libraries can be relatively large, so linking a popular library into

multiple programs wastes memory. Moreover, the libraries are bound when
linked—even when they are updated later to fix bugs—forcing the statically-
linked code to use the old, buggy version.

§ Dynamic linking
• The desired external function is loaded and linked to the program only after

it is first called; if it’s never called, it’s never loaded and linked. Every call
after the first one uses a fast link, so the dynamic overhead is only paid once.

• Each time a program starts it links in the current version of the library
functions it needs, which is how it can get the newest version. Furthermore,
if multiple programs use the same dynamically linked library, the code in the
library need appear only once in memory.

• Instead of jumping to the real function, it jumps to a short (three-instruction)
stub function.

Static vs. Dynamic Linking

54

Static Libraries

55

§ Static Library: Collection of object files
(think: like a zip archive)

§ Q: Every program contains the entire library?
§ A: No, the linker picks only object files needed to resolve

undefined references at link time

§ E.g., libc.a contains many objects:
• printf.o, fprintf.o, vprintf.o, sprintf.o, snprintf.o, …
• read.o, write.o, open.o, close.o, mkdir.o, readdir.o, …
• rand.o, exit.o, sleep.o, time.o, ….

Shared Libraries

56

§ Q: Every program contains parts of same library?
§ A: No, they can use shared libraries
• Executables all point to single shared library on disk
• Final linking (and relocations) done by the loader

§ Optimizations:
• Library compiled at fixed non-zero address
• Jump table in each program instead of relocations
• Can even patch jumps on-the-fly

Loader: Run a Program

§ Steps of translation from C source code to a running program. These are
the logical steps, although some steps are combined to accelerate
translation.

57

Loader

§ A program like the one in a.out is an executable file kept in
the computer’s storage. When one is to be run, the loader’s
job is to load it into memory and jump to the starting address.
• Initializes registers, stack, arguments to first function
• Jumps to entry-point

§ The “loader” today is the operating system; stated
alternatively, loading a.out is one of many tasks of an
operating system.

58

How to Run a Program?

59

§ Create OS “PCB”, address space, stack and heap
§ Load instruction and data segments of executable file

into memory
§ “Transfer control to program”
§ Provide services to program
§ While protecting OS and program

How to Run a Program?

60

§

§

§

§

§

Memory Layout
§ RV32I allocation of memory to program

and data. The high addresses are the top
of the figure, and the low addresses are
the bottom.

§ In this RISC-V software convention, the
stack pointer (sp) starts at 0xbffffff0 and
grows down toward the Static data.

§ The text (program code) starts at
0x00010000 and includes the statically-
linked libraries.

§ The Static data starts immediately above
the text region; in this example, we
assume that address is 0x10000000.

§ Dynamic data, allocated in C by
malloc(), is just above the Static data.
Called the heap, it grows upward toward
the stack. It includes the dynamically-
linked libraries.

61

Loading Statically-linked Programs

§ Programs are usually loaded at a fixed address in a fresh
address space (so can be linked for that address).

§ In such systems, loading involves the following actions:
• Determine how much address space is needed from the object file header;
• Allocate that address space;
• Read the program into the segments in the address space;
• Zero out any uninitialized data (“.bss” segment) if not done automatically by

the virtual memory system.
• Create a stack segment;
• Set up any runtime information, e.g., program arguments or environment

variables.
• Start the program executing.

62

Loading Dynamically-linked Programs

§ Loading is a little trickier for dynamically-linked
programs. Instead of simply starting the program,
the operating system starts the dynamic linker. It in
turn starts the desired program, and then handles all
first-time external calls, copies the functions into
memory, and edits the program after each call to
point it to the correct function.
• GOT & PLT

63

Position-Independent Code (PIC)

§ If the load address for a program is not fixed (e.g.,
shared libraries), we use position independent code.

§ Basic idea: separate code from data; generate code
that doesn’t depend on where it is loaded.

§ PC-relative addressing can give position-
independent code references.

64

PIC (cont’d): ELF Files

§ ELF executable file characteristics:
• Data pages follow code pages;
• The offset from the code to the data does not depend on

where the program is loaded.
§ The linker creates a global offset table (GOT) that

contains offsets to all global data used.
§ If a program can load its own address into a register,

it can then use a fixed offset to access the GOT, and
thence the data.

65

PIC (cont’d): Code on ELF

§ Code to figure out its own address (x86):
 call L /* push address of next instruction on stack */
L: pop %ebx /* pop address of this instruction into %ebx */

§ Accessing a global variable x in PIC:
• GOT has an entry, say at position k, for x. The dynamic linker fills in

the address of x into this entry at load time.
• Compute “my address” into a register, say %ebx (above);
• %ebx += offset_to_GOT; /* fixed for a given program */
• %eax = contents of location k(%ebx) /* %eax = addr. of x */
• access memory location pointed at by %eax;

66

PIC on ELF: Example

67

Based on Linkers and Loaders, by J. R. Levine (Morgan Kaufman, 2000)

Shared Libraries

§ Have a single copy of the library that is used by all
running programs.

§ Saves (disk and memory) space by avoiding
replication of library code.

§ Virtual memory management in the OS allows
different processes to share “read-only” pages, e.g.,
text and read-only data.
• This lets us get by with a single physical-memory copy of

shared library code.

68

Shared Libraries: cont’d

§ At link time, the linker:
• Searches a (specified) set of libraries, in some fixed order,

to find modules that resolve any undefined external
symbols.
• Puts a list of libraries containing such modules into the

executable.

§ At load time, the startup code:
• Finds these libraries;
• Maps them into the program’s address space;
• Carries out library-specific initialization.

§ Startup code may be in the OS, in the executable, or
in a special dynamic linker.

69

Dynamic Linking

§ Defers much of the linking process until the
program starts running.

§ Easier to create, update than statically linked
libraries.

§ Has higher runtime performance cost than statically
linked libraries:
• Much of the linking process has to be redone each time a

program runs.
• Every dynamically linked symbol has to be looked up in

the symbol table and resolved at runtime.

70

Dynamic Linking: Basic Mechanism

§ A reference to a dynamically linked procedure p is
mapped to code that invokes a handler.

§ At runtime, when p is called, the handler gets
executed:
• The handler checks to see whether p has been loaded

already (due to some other reference);
• If so, the current reference is linked in, and execution

continues normally.
• Otherwise, the code for p is loaded and linked in.

71

Dynamic Linking: ELF Files

§ ELF shared libraries use PIC (position independent
code), so text sections do not need relocation.

§ Data references use a GOT:
• Each global symbol has a relocatable pointer to it in the

GOT;
• The dynamic linker relocates these pointers.

§ We still need to invoke the dynamic linker on the
first reference to a dynamically linked procedure.
• Done using a procedure linkage table (PLT);
• PLT adds a level of indirection for function calls

(analogous to the GOT for data references).

72

ELF Dynamic Linking: PLT and GOT

73

ELF Dynamic Linking: Lazy Linkage

§ Initially, GOT entry points to PLT
code that invokes the dynamic
linker.
• Offset identifies both the symbol

being resolved and the
corresponding GOT entry.

§ The dynamic linker looks up the
symbol value and updates the GOT
entry.

§ Subsequent calls bypass dynamic
linker, go directly to callee.

§ This reduces program startup time.
Also, routines that are never called
are not resolved.

74

Before:

After:

