跳转至

01-Propositional_Logic

I Introduction

I.1 base notations

Our first building block is the notion of a proposition, which is simply a statement which is either true or false.

For example:

|400

Notations we should know:

  1. Conjunction(合取): P∧Q (“P and Q”). True only when both P and Q are true.
  2. Disjunction(析取): P∨Q (“P or Q”). True when at least one of P and Q is true.
  3. Negation(取反 / 否): ¬P (“not P”). True when P is false.
  4. Implication(蕴涵词): P ⇒ Q (“P implies Q”). This is the same as “If P, then Q.”**
  5. two-way implication p↔q
\[ \begin{aligned}&(\mathrm{a})\:\forall x\forall yP(x,y)\implies\forall y\forall xP(x,y).&&\text{True}\\&(\mathrm{b})\:\forall x\exists yP(x,y)\implies\exists y\forall xP(x,y).&&\text{False}\\&(\mathrm{c})\:\exists x\forall yP(x,y)\implies\forall y\exists xP(x,y).&&\text{True}\\&(\mathrm{a})\:\forall x\:(P(x)\wedge Q(x))\stackrel{?}{\equiv}\:\forall x\:P(x)\wedge\forall x\:Q(x)\quad\textsf{T}\\&(\mathrm{b})\:\forall x\:(P(x)\vee Q(x))\stackrel{?}{\equiv}\:\forall x\:P(x)\vee\forall x\:Q(x)\quad\textsf{F}\\&(\mathrm{c})\:\exists x\:(P(x)\vee Q(x))\stackrel{?}{\equiv}\exists x\:P(x)\vee\exists x\:Q(x)\quad\textsf{T}\\&(\mathrm{d})\:\exists x\:(P(x)\wedge Q(x))\stackrel{?}{\equiv}\exists x\:P(x)\wedge\exists x\:Q(x)\quad\textsf{F}\end{aligned} \]

(Detailed reason omission)

  1. quantifiers: The universal quantifier ∀ (“for all”) and the existential quantifier ∃ (“there exists”).

We often write a proposition in the form of something like (∀x ∈ Z)(∃y ∈ Z)(x < y)

  1. equivalent is something like:
  • ¬(P∧Q) ≡ (¬P∨ ¬Q)
  • ¬(P∨Q) ≡ (¬P∧ ¬Q)

Of course, these two formulas should be remembered since they tell us how to negate conjunctions and disjunctions

  1. about P→Q, the truth table is shown below:(0 stands for F while 1 stands for T)
P Q P→Q
0 0 1
0 1 1
1 0 0
1 1 1
  1. about P↔Q, the truth table is shown below:(0 stands for F while 1 stands for T)
P Q P↔Q
0 0 1
0 1 0
1 0 0
1 1 1
  1. We say that a sentence A entails another sentence B if in all models that A is true, B is as well, and we represent this relationship as A ⊨ B.

I.2 proposition formula

|400

|400

|400

|400

|400

(穷举定理我们在 02-Proof 中的 "Proof by Cases" 部分中将会使用到)

I.3 logical equivalence

当命题 \(A\longleftrightarrow B\) 是重言式时,称 A 逻辑等价于 B,记作 \(A\equiv B\)

实际上,符号 ⊨ 也是,但是打不出来,所以一般用 \(\equiv\)

逻辑等价:任何赋值情况下,A B 都等值。

I.3.1 important logical equivalence

|400

|400

I.4 logical implication

当命题公式 A \(\to\) B 是重言式时,则称 A 逻辑蕴涵 B ,记作 A⊨B。

公式 A 的所有成真赋值都是公式 B 的成真赋值。

即任何赋值情况下,只要 A 为真,则 B 为真; \(A \equiv B\) 即为 \(A⊨B \land B⊨A\)

I.4.1 important logical implication

|400

I.5 The important properties of logical equivalence and logical implication

|400

I.6 ways to proof

|400

I.7 priority of operations

1. 括号 ():无论在哪个领域,括号始终具有最高的优先级,用于改变默认的优先级顺序。 2.  ~  !:在逻辑运算中,否定(逻辑非、位非)通常具有较高的优先级。 3.  :这包括逻辑与(AND、位与(&。在没有括号改变顺序的情况下,它们通常在否定之后立即评估。 4. 异或 :在某些情况下,需要考虑异或运算(XOR,它可能在与运算和或运算之间。 5.  :这包括逻辑或(OR、位或(|。它们在逻辑与之后进行评估。 6. 条件 :如蕴含(→)通常优先级较低。 7. 双条件↔:双条件(↔)通常具有最低的优先级

II signs in latex

符号 ¬
latex 公式 \neg \wedge \vee \to \leftrightarrow

III Practice

[!QUOTE]

We need a lot of insight into propositions rather than just grasping concepts

For every real number k, there is a unique real solution to \(x^{3}\) = k.

(∀k ∈ R) (∃x ∈ R)(x 3 = k)∧(∀y,z ∈ R)(((y 3 = k)∧(z 3 = k)) ⇒ (y = z)) .

评论