跳转至

13-Introduction_of_Discrete_Probability

I Random Experiments & Probability Spaces

[!QUOTE]

Each element of the sample space is assigned a probability which tells us how likely the outcome is to occur when we actually perform the experiment.

Typically, a random experiment consists of drawing a sample of k elements from a set S of cardinality n.

A probability space is a sample space Ω, together with a probability P[ω] (often also denoted as Pr[ω]) for each sample point ω, such that

  • (Non-negativity): 0 ≤ P[ω] ≤ 1 for all ω ∈ Ω.
  • (Sum to 1): ∑ ω∈Ω P[ω] = 1, i.e., the sum of the probabilities over all outcomes is 1.

Formally, an event A made of some sample from Ω is just a subset of the sample space Ω, i.e., A ⊆ Ω

For any event A ⊆ Ω, we define the probability of A to be

\[ P[A]=\sum_{\omega \in A}P[\omega] \]

II Example

对于普通的古典概型大家在高中就已经学习过,不再涉及,这里记录几个比较有意思的例子:

II.1 Birthday Paradox(生日悖论)

比较长,就放张截图,但是结论就是,23 个人中,有两人同一天生日概率就是 50% 以上;60 个人中,有两人同一天生日的概率就达到了 99% ! !

|500

II.2 The Monty Hall Problem

详细内容可以自行搜索;概括就是:嘉宾 (contestant) 要进行三(A、B、C)选一获奖 (price) ,选择(假如选择了 A)过后主持人 (hoster) 告诉 ta 剩下两个中错误的那个(例如是 C,那么 ta 应该继续选择 A 还是改选 B 呢?对于有所选择的地方我们认为每种可能性相同:嘉宾最初的选择是随机的,如果嘉宾一开始选对了,则主持人从剩余两个门随机选取。

看起来,二者(A、B )似乎并没有区别,毕竟只是将 C 排除了?

但是你看看,A 是最开始就选了的,\(\frac{1}{3}\) 没跑了;C 已经被排除了,概率肯定是 0;那你看看这个 B 的概率不就是 \(\frac{2}{3}\) 嘛。

那无疑,选 B

|500

有点奇怪,但是……这个条件概率我们会在后面讲解;因为 hoster 排除错误的选项这个概率为 1 ,导致了概率的改变。

III Words

下面是一些常见的名词

  1. H(head)/T(tail) 硬币正 / 反面
  2. Coin 硬币
  3. Fair Coin 公平硬币
  4. Fair Dice 公平骰子
  5. Loaded Coin 作弊硬币
  6. Loaded Dice 作弊骰子
  7. Toss 抛掷
  8. Roll Die/Dice 掷骰子(后者为 pl
  9. Heads 正面
  10. Tails 反面
  11. Side
  12. Face Value 面值
  13. Probability Space 概率空间
  14. Sample Space 样本空间
  15. Event 事件
  16. Outcomes 结果
  17. Equally Likely 等可能
  18. Combinations 组合
  19. Permutations 排列
  20. \((^{n}_{x}) := C^{x}_{n}\)
  21. Roulette 轮盘赌注

评论