13-Introduction_of_Discrete_Probability
I Random Experiments & Probability Spaces¶
[!QUOTE]
Each element of the sample space is assigned a probability which tells us how likely the outcome is to occur when we actually perform the experiment.
Typically, a random experiment consists of drawing a sample of k elements from a set S of cardinality n.
A probability space is a sample space Ω, together with a probability P[ω] (often also denoted as Pr[ω]) for each sample point ω, such that
- (Non-negativity): 0 ≤ P[ω] ≤ 1 for all ω ∈ Ω.
- (Sum to 1): ∑ ω∈Ω P[ω] = 1, i.e., the sum of the probabilities over all outcomes is 1.
Formally, an event A made of some sample from Ω is just a subset of the sample space Ω, i.e., A ⊆ Ω
For any event A ⊆ Ω, we define the probability of A to be
II Example¶
对于普通的古典概型大家在高中就已经学习过,不再涉及,这里记录几个比较有意思的例子:
II.1 Birthday Paradox(生日悖论)¶
比较长,就放张截图,但是结论就是,23 个人中,有两人同一天生日概率就是 50% 以上;60 个人中,有两人同一天生日的概率就达到了 99% ! !
II.2 The Monty Hall Problem¶
详细内容可以自行搜索;概括就是:嘉宾 (contestant) 要进行三(A、B、C)选一获奖 (price) ,选择(假如选择了 A)过后主持人 (hoster) 告诉 ta 剩下两个中错误的那个(例如是 C
看起来,二者(A、B )似乎并没有区别,毕竟只是将 C 排除了?
但是你看看,A 是最开始就选了的,\(\frac{1}{3}\) 没跑了;C 已经被排除了,概率肯定是 0;那你看看这个 B 的概率不就是 \(\frac{2}{3}\) 嘛。
那无疑,选 B。
有点奇怪,但是……这个条件概率我们会在后面讲解;因为 hoster 排除错误的选项这个概率为 1 ,导致了概率的改变。
III Words¶
下面是一些常见的名词
- H(head)/T(tail) 硬币正 / 反面
- Coin 硬币
- Fair Coin 公平硬币
- Fair Dice 公平骰子
- Loaded Coin 作弊硬币
- Loaded Dice 作弊骰子
- Toss 抛掷
- Roll Die/Dice 掷骰子(后者为 pl)
- Heads 正面
- Tails 反面
- Side 面
- Face Value 面值
- Probability Space 概率空间
- Sample Space 样本空间
- Event 事件
- Outcomes 结果
- Equally Likely 等可能
- Combinations 组合
- Permutations 排列
- \((^{n}_{x}) := C^{x}_{n}\)
- Roulette 轮盘赌注