跳转至

17-Concentration_Inequalities_and_the_Laws_of_Large_Numbers

[!ATTENTION]

在阅读下面的内容前,您可能需要先修读 微积分 - 极限 部分内容以便更好理解下面的讲解

我们有时说一个东西的概率为 p ,但在 empirical experience(实践实验,与理论推理相对应) 中,我们要进行多少次才有足够的把握让实验概率 \(\hat{p}\) p 足够接近呢?下面的论述给出的答案:

不难看出,这与微积分中证明极限存在时取 n 足够大的情况是一样的。

对于上边最后的结论,我们下面将一步一步进行证明。

I Markov’s Inequality(马尔可夫不等式)

[!THEOREM 17.1]

(Markov’s Inequality). For a nonnegative random variable X (i.e., X(ω) ≥ 0 for all ω ∈ Ω) with finite mean, \(P[X ≥ c] ≤ \frac{E[X]}{c}\) , for any positive constant c.

proof is shown below:

[!INFO]

Indicator function

\[I_{A} = \begin{cases}1,\quad if\ x \in A \\ 0,\quad if\ x \not\in A \end{cases}\quad or\quad I\{\epsilon\} = \begin{cases}1,\quad if\ \epsilon\ is\ true \\ 0,\quad if\ \epsilon\ is\ false \end{cases}\]

II Chebyshev’s Inequality(切比雪夫不等式)

[!THEOREM 17.2]

(Chebyshev’s Inequality) For a random variable X with finite expectation E[X] = µ, \(P[|X − µ| ≥ c] ≤ \frac{Var(X)}{c^{2}}\) , for any positive constant c.

The proof of Chebyshev's Inequality is easy since we just need to take

\[|X − \mu| ≥ c \implies |X-\mu|^{2} \geq c^{2}$$ using Markov’s Inequality,so we get that \]

P[|X-\mu| \geq c] = P[|X - \mu|^{2} \geq c^{2}] \leq \frac{E[(X-\mu)^{2}]}{c^{2}} = \frac{Var(X)}{c^{2}}

\[ take $c = k\sigma$ where $\sigma = \sqrt{ Var(X) }$ , we get that $$P[|X-\mu| \geq k\sigma] \leq \frac{1}{k^{2}}\]

which is of great importance.

III Estimating the Bias of a Coin

Now, let's solve the problem come up with at the begin.

IV Law of Large Numbers(大数定律)

[!THEOREM 17.3]

(Law of Large Numbers) . Let X1,X2,..., be a sequence of i.i.d. (independent and identically distributed) random variables with common finite expectation E[Xi ] = µ for all i. Then, their partial sums Sn = X1 +X2 +···+Xn satisfy

$$P\left[ |\frac{1}{n}S_{n}-\mu|\geq\epsilon \to 0 \right]\quad as\quad n \to \infty $$

for every ε > 0, however small.

That means if n is big enough, \(\frac{S_{n}}{n} \to \mu\) .

评论